分子模拟促进多孔膜设计的研究进展

Wei Yang , Meina Xiong , Dongliang Jin, Jing Zhong
{"title":"分子模拟促进多孔膜设计的研究进展","authors":"Wei Yang ,&nbsp;Meina Xiong ,&nbsp;Dongliang Jin,&nbsp;Jing Zhong","doi":"10.1016/j.advmem.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular modeling techniques are regarded as an effective approach to study various advanced membranes at the microscale. These investigations of porous membranes are devoted to better understanding their chemical structures, pore topology and morphology, transport/permeation mechanisms, and the structure-activity relationship. This review provides an overview of current research on the molecular simulations of the structure, gas-/liquid-phase transport, and phase behaviors in porous membranes. In more detail, quantum chemistry is first introduced to probe the structures of porous membranes at the molecular/atomistic level. In this part, the pore topology estimated by using the geometric algorithm is also presented. Transport properties of porous membranes determined using molecular dynamics are then summarized. To study the formation kinetics of membranes and the diffusion kinetics of fluids within membrane’s pores, free energy calculations are discussed. Moreover, the phase behaviors involved in the membrane process by Monte Carlo simulations are presented. Finally, a brief discussion of the multiscale simulations is provided to comprehensively understand the structure-activity relationship. These theoretical works pave constructive ways for the design of functional membranes used for separation and purification, energy harvesting and storage, petrochemical engineering, and so on.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on molecular modeling-facilitated design of porous membranes\",\"authors\":\"Wei Yang ,&nbsp;Meina Xiong ,&nbsp;Dongliang Jin,&nbsp;Jing Zhong\",\"doi\":\"10.1016/j.advmem.2025.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular modeling techniques are regarded as an effective approach to study various advanced membranes at the microscale. These investigations of porous membranes are devoted to better understanding their chemical structures, pore topology and morphology, transport/permeation mechanisms, and the structure-activity relationship. This review provides an overview of current research on the molecular simulations of the structure, gas-/liquid-phase transport, and phase behaviors in porous membranes. In more detail, quantum chemistry is first introduced to probe the structures of porous membranes at the molecular/atomistic level. In this part, the pore topology estimated by using the geometric algorithm is also presented. Transport properties of porous membranes determined using molecular dynamics are then summarized. To study the formation kinetics of membranes and the diffusion kinetics of fluids within membrane’s pores, free energy calculations are discussed. Moreover, the phase behaviors involved in the membrane process by Monte Carlo simulations are presented. Finally, a brief discussion of the multiscale simulations is provided to comprehensively understand the structure-activity relationship. These theoretical works pave constructive ways for the design of functional membranes used for separation and purification, energy harvesting and storage, petrochemical engineering, and so on.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"5 \",\"pages\":\"Article 100145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823425000193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子模拟技术被认为是在微观尺度上研究各种先进膜的有效途径。这些多孔膜的研究致力于更好地了解它们的化学结构、孔隙拓扑和形态、传输/渗透机制以及构效关系。本文综述了多孔膜结构、气/液相输运和相行为的分子模拟研究现状。更详细地说,量子化学首次被引入到在分子/原子水平上探测多孔膜的结构。在这一部分中,还介绍了利用几何算法估计的孔隙拓扑结构。然后总结了用分子动力学方法测定多孔膜的输运特性。为了研究膜的形成动力学和膜孔内流体的扩散动力学,讨论了自由能的计算。此外,通过蒙特卡罗模拟给出了膜过程中所涉及的相行为。最后,对多尺度模拟进行了简要讨论,以全面了解结构-活动关系。这些理论工作为分离净化、能量收集与储存、石油化工等领域功能膜的设计提供了有益的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Review on molecular modeling-facilitated design of porous membranes

Review on molecular modeling-facilitated design of porous membranes
Molecular modeling techniques are regarded as an effective approach to study various advanced membranes at the microscale. These investigations of porous membranes are devoted to better understanding their chemical structures, pore topology and morphology, transport/permeation mechanisms, and the structure-activity relationship. This review provides an overview of current research on the molecular simulations of the structure, gas-/liquid-phase transport, and phase behaviors in porous membranes. In more detail, quantum chemistry is first introduced to probe the structures of porous membranes at the molecular/atomistic level. In this part, the pore topology estimated by using the geometric algorithm is also presented. Transport properties of porous membranes determined using molecular dynamics are then summarized. To study the formation kinetics of membranes and the diffusion kinetics of fluids within membrane’s pores, free energy calculations are discussed. Moreover, the phase behaviors involved in the membrane process by Monte Carlo simulations are presented. Finally, a brief discussion of the multiscale simulations is provided to comprehensively understand the structure-activity relationship. These theoretical works pave constructive ways for the design of functional membranes used for separation and purification, energy harvesting and storage, petrochemical engineering, and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信