Mahmoud Ayyad , Marouane Temimi , Mohamed Abdelkader , Moheb M.R. Henein , Frank L. Engel , R. Russell Lotspeich , Jack R. Eggleston
{"title":"RIce-Net:整合地面相机和机器学习,实现河冰自动探测","authors":"Mahmoud Ayyad , Marouane Temimi , Mohamed Abdelkader , Moheb M.R. Henein , Frank L. Engel , R. Russell Lotspeich , Jack R. Eggleston","doi":"10.1016/j.envsoft.2025.106454","DOIUrl":null,"url":null,"abstract":"<div><div>River ice plays a critical role in controlling streamflow in cold regions. The U.S. Geological Survey (USGS) qualifies affected water-level measurements and inferred streamflow by ice conditions at a date later than the day of the actual measurements. This study introduces a novel computer vision-based framework, River Ice-Network (RIce-Net), that uses the USGS nationwide network of ground-based cameras whose images are published through the National Imagery Management System (NIMS). RIce-Net consists of a binary classifier to identify ice-affected images that are segmented to calculate the fraction of ice coverage, which is used to automatically generate a near real-time ice flag. RIce-Net was trained using images from selected NIMS stations collected in 2023 and tested using images collected in 2024. Also, the framework’s scalability and transferability were tested over another station that was not included in the training process. RIce-Net ice flags are well-aligned with those reported by USGS.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"190 ","pages":"Article 106454"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIce-Net: Integrating ground-based cameras and machine learning for automated river ice detection\",\"authors\":\"Mahmoud Ayyad , Marouane Temimi , Mohamed Abdelkader , Moheb M.R. Henein , Frank L. Engel , R. Russell Lotspeich , Jack R. Eggleston\",\"doi\":\"10.1016/j.envsoft.2025.106454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>River ice plays a critical role in controlling streamflow in cold regions. The U.S. Geological Survey (USGS) qualifies affected water-level measurements and inferred streamflow by ice conditions at a date later than the day of the actual measurements. This study introduces a novel computer vision-based framework, River Ice-Network (RIce-Net), that uses the USGS nationwide network of ground-based cameras whose images are published through the National Imagery Management System (NIMS). RIce-Net consists of a binary classifier to identify ice-affected images that are segmented to calculate the fraction of ice coverage, which is used to automatically generate a near real-time ice flag. RIce-Net was trained using images from selected NIMS stations collected in 2023 and tested using images collected in 2024. Also, the framework’s scalability and transferability were tested over another station that was not included in the training process. RIce-Net ice flags are well-aligned with those reported by USGS.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"190 \",\"pages\":\"Article 106454\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001380\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001380","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
RIce-Net: Integrating ground-based cameras and machine learning for automated river ice detection
River ice plays a critical role in controlling streamflow in cold regions. The U.S. Geological Survey (USGS) qualifies affected water-level measurements and inferred streamflow by ice conditions at a date later than the day of the actual measurements. This study introduces a novel computer vision-based framework, River Ice-Network (RIce-Net), that uses the USGS nationwide network of ground-based cameras whose images are published through the National Imagery Management System (NIMS). RIce-Net consists of a binary classifier to identify ice-affected images that are segmented to calculate the fraction of ice coverage, which is used to automatically generate a near real-time ice flag. RIce-Net was trained using images from selected NIMS stations collected in 2023 and tested using images collected in 2024. Also, the framework’s scalability and transferability were tested over another station that was not included in the training process. RIce-Net ice flags are well-aligned with those reported by USGS.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.