{"title":"混凝土填充钢管柱的混合防火测试:大规模实验和数值研究","authors":"Majid Hamidi , Masoud Adelzadeh , Hamzeh Hajiloo","doi":"10.1016/j.firesaf.2025.104402","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid Fire Testing (HFT) integrates experimental fire testing with numerical simulations to better capture the interaction between a physical sample in a furnace fire and the structure that would surround it in real-world conditions. Unlike traditional fire testing, HFT enables a more accurate analysis of complex structural behaviours by simulating the effect of adjacent structural elements, thus providing a realistic assessment of a structure's fire performance. This paper presents a full-scale experimental hybrid fire test of a concrete-filled steel tube (CFST) column using an advanced HFT framework developed in previous research. A three-story, four-bay structure with the steel moment-resisting frame was selected for the validation. One column of the structure was physically represented in the laboratory, while the remainder of the structure was modelled numerically through finite element software. The physical specimen was heated following a standard fire curve. The experimental results are compared with numerical predictions and fire resistance tests of a similar single column to validate the performance of the developed method in full-scale applications. This comparison also provides insight into the performance of the column when acting as part of the larger structural system. The test results confirmed the proposed method can accurately simulate the complicated behaviour of a CFST column at high temperatures and subsequent failure.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"154 ","pages":"Article 104402"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid fire testing of concrete-filled steel tube columns: A large-scale experimental and numerical investigation\",\"authors\":\"Majid Hamidi , Masoud Adelzadeh , Hamzeh Hajiloo\",\"doi\":\"10.1016/j.firesaf.2025.104402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid Fire Testing (HFT) integrates experimental fire testing with numerical simulations to better capture the interaction between a physical sample in a furnace fire and the structure that would surround it in real-world conditions. Unlike traditional fire testing, HFT enables a more accurate analysis of complex structural behaviours by simulating the effect of adjacent structural elements, thus providing a realistic assessment of a structure's fire performance. This paper presents a full-scale experimental hybrid fire test of a concrete-filled steel tube (CFST) column using an advanced HFT framework developed in previous research. A three-story, four-bay structure with the steel moment-resisting frame was selected for the validation. One column of the structure was physically represented in the laboratory, while the remainder of the structure was modelled numerically through finite element software. The physical specimen was heated following a standard fire curve. The experimental results are compared with numerical predictions and fire resistance tests of a similar single column to validate the performance of the developed method in full-scale applications. This comparison also provides insight into the performance of the column when acting as part of the larger structural system. The test results confirmed the proposed method can accurately simulate the complicated behaviour of a CFST column at high temperatures and subsequent failure.</div></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"154 \",\"pages\":\"Article 104402\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711225000669\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000669","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Hybrid fire testing of concrete-filled steel tube columns: A large-scale experimental and numerical investigation
Hybrid Fire Testing (HFT) integrates experimental fire testing with numerical simulations to better capture the interaction between a physical sample in a furnace fire and the structure that would surround it in real-world conditions. Unlike traditional fire testing, HFT enables a more accurate analysis of complex structural behaviours by simulating the effect of adjacent structural elements, thus providing a realistic assessment of a structure's fire performance. This paper presents a full-scale experimental hybrid fire test of a concrete-filled steel tube (CFST) column using an advanced HFT framework developed in previous research. A three-story, four-bay structure with the steel moment-resisting frame was selected for the validation. One column of the structure was physically represented in the laboratory, while the remainder of the structure was modelled numerically through finite element software. The physical specimen was heated following a standard fire curve. The experimental results are compared with numerical predictions and fire resistance tests of a similar single column to validate the performance of the developed method in full-scale applications. This comparison also provides insight into the performance of the column when acting as part of the larger structural system. The test results confirmed the proposed method can accurately simulate the complicated behaviour of a CFST column at high temperatures and subsequent failure.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.