利用机器学习从中子星观测数据推断状态方程

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
N.K. Patra , Tuhin Malik , Helena Pais , Kai Zhou , B.K. Agrawal , Constança Providência
{"title":"利用机器学习从中子星观测数据推断状态方程","authors":"N.K. Patra ,&nbsp;Tuhin Malik ,&nbsp;Helena Pais ,&nbsp;Kai Zhou ,&nbsp;B.K. Agrawal ,&nbsp;Constança Providência","doi":"10.1016/j.physletb.2025.139470","DOIUrl":null,"url":null,"abstract":"<div><div>We have conducted an extensive study using a diverse set of equations of state (EoSs) to uncover strong relationships between neutron star (NS) observables and the underlying EoS parameters using symbolic regression method. These EoS models, derived from a mix of agnostic and physics-based approaches, considered neutron stars composed of nucleons, hyperons, and other exotic degrees of freedom in beta equilibrium. The maximum mass of a NS is found to be strongly correlated with the pressure and baryon density at an energy density of approximately 800 MeV.fm<sup>−3</sup>. We have also demonstrated that the EoS can be expressed as a function of radius and tidal deformability within the NS mass range 1-2<span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. These insights offer a promising and efficient framework to decode the dense matter EoS directly from the accurate knowledge of NS observables.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"865 ","pages":"Article 139470"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring the equation of state from neutron star observables via machine learning\",\"authors\":\"N.K. Patra ,&nbsp;Tuhin Malik ,&nbsp;Helena Pais ,&nbsp;Kai Zhou ,&nbsp;B.K. Agrawal ,&nbsp;Constança Providência\",\"doi\":\"10.1016/j.physletb.2025.139470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have conducted an extensive study using a diverse set of equations of state (EoSs) to uncover strong relationships between neutron star (NS) observables and the underlying EoS parameters using symbolic regression method. These EoS models, derived from a mix of agnostic and physics-based approaches, considered neutron stars composed of nucleons, hyperons, and other exotic degrees of freedom in beta equilibrium. The maximum mass of a NS is found to be strongly correlated with the pressure and baryon density at an energy density of approximately 800 MeV.fm<sup>−3</sup>. We have also demonstrated that the EoS can be expressed as a function of radius and tidal deformability within the NS mass range 1-2<span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. These insights offer a promising and efficient framework to decode the dense matter EoS directly from the accurate knowledge of NS observables.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"865 \",\"pages\":\"Article 139470\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037026932500231X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037026932500231X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用一组不同的状态方程(EoS)进行了广泛的研究,以揭示中子星(NS)观测值与潜在的EoS参数之间的强关系,并使用符号回归方法。这些EoS模型是由不可知论和基于物理的方法混合而来的,考虑了由核子、超子和其他奇异自由度组成的中子星。在能量密度约为800 MeV.fm−3时,粒子的最大质量与压力和重子密度密切相关。我们还证明了EoS可以表示为半径和NS质量范围内1-2M⊙的潮汐变形能力的函数。这些见解提供了一个有前途和有效的框架,可以直接从NS可观测值的准确知识中解码致密物质EoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring the equation of state from neutron star observables via machine learning
We have conducted an extensive study using a diverse set of equations of state (EoSs) to uncover strong relationships between neutron star (NS) observables and the underlying EoS parameters using symbolic regression method. These EoS models, derived from a mix of agnostic and physics-based approaches, considered neutron stars composed of nucleons, hyperons, and other exotic degrees of freedom in beta equilibrium. The maximum mass of a NS is found to be strongly correlated with the pressure and baryon density at an energy density of approximately 800 MeV.fm−3. We have also demonstrated that the EoS can be expressed as a function of radius and tidal deformability within the NS mass range 1-2M. These insights offer a promising and efficient framework to decode the dense matter EoS directly from the accurate knowledge of NS observables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信