{"title":"蜂窝废弃物碳点作为检测卡培他滨化疗药物的灵敏传感探针","authors":"Pradnya Khandagale , Prathamesh Chougale , Nafeesa Mujawar , Muskan Momin , Rohant Dhabbe , Rajratna Kakade , Sandip Nipane , Sandip Sabale , Deok-kee Kim","doi":"10.1016/j.saa.2025.126241","DOIUrl":null,"url":null,"abstract":"<div><div>Anticancer medication provoked concerns owing to its adverse health effects from overdose and henceforth, its sensitive monitoring is crucial. Carbon dots (CDs), as a pioneering carbon nanomaterial, have particles lower than 10 nm. CDs have an extensive multitude of applications based on their luminous qualities. The present era is focused on turning waste into economically viable products. The current research demonstrates a feasible method for preparing green fluorescent CDs from honeycomb waste (HCCDs). The HCCDs display excitation-dependent emission properties, exhibiting a blue shift with a change in excitation wavelength, and acquiring good stability with a zeta potential of −14.8 mV. Nevertheless, the particle size ranges between 2–5 nm. It is noteworthy that the fluorescence intensity of HCCDs was remarkably enhanced by the addition of increasing concentrations of capecitabine due to complex formation. Additionally, the sensor shows a determined detection limit of 1.04 μmolL<sup>−1</sup> without interference from ions. This demonstrates exclusive selectivity and sensitivity which paves a new way for the determination of the capecitabine drug.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"339 ","pages":"Article 126241"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Honeycomb waste-derived carbon dots as a sensitive sensing probe for detection of capecitabine chemo drug\",\"authors\":\"Pradnya Khandagale , Prathamesh Chougale , Nafeesa Mujawar , Muskan Momin , Rohant Dhabbe , Rajratna Kakade , Sandip Nipane , Sandip Sabale , Deok-kee Kim\",\"doi\":\"10.1016/j.saa.2025.126241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anticancer medication provoked concerns owing to its adverse health effects from overdose and henceforth, its sensitive monitoring is crucial. Carbon dots (CDs), as a pioneering carbon nanomaterial, have particles lower than 10 nm. CDs have an extensive multitude of applications based on their luminous qualities. The present era is focused on turning waste into economically viable products. The current research demonstrates a feasible method for preparing green fluorescent CDs from honeycomb waste (HCCDs). The HCCDs display excitation-dependent emission properties, exhibiting a blue shift with a change in excitation wavelength, and acquiring good stability with a zeta potential of −14.8 mV. Nevertheless, the particle size ranges between 2–5 nm. It is noteworthy that the fluorescence intensity of HCCDs was remarkably enhanced by the addition of increasing concentrations of capecitabine due to complex formation. Additionally, the sensor shows a determined detection limit of 1.04 μmolL<sup>−1</sup> without interference from ions. This demonstrates exclusive selectivity and sensitivity which paves a new way for the determination of the capecitabine drug.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"339 \",\"pages\":\"Article 126241\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525005475\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525005475","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Honeycomb waste-derived carbon dots as a sensitive sensing probe for detection of capecitabine chemo drug
Anticancer medication provoked concerns owing to its adverse health effects from overdose and henceforth, its sensitive monitoring is crucial. Carbon dots (CDs), as a pioneering carbon nanomaterial, have particles lower than 10 nm. CDs have an extensive multitude of applications based on their luminous qualities. The present era is focused on turning waste into economically viable products. The current research demonstrates a feasible method for preparing green fluorescent CDs from honeycomb waste (HCCDs). The HCCDs display excitation-dependent emission properties, exhibiting a blue shift with a change in excitation wavelength, and acquiring good stability with a zeta potential of −14.8 mV. Nevertheless, the particle size ranges between 2–5 nm. It is noteworthy that the fluorescence intensity of HCCDs was remarkably enhanced by the addition of increasing concentrations of capecitabine due to complex formation. Additionally, the sensor shows a determined detection limit of 1.04 μmolL−1 without interference from ions. This demonstrates exclusive selectivity and sensitivity which paves a new way for the determination of the capecitabine drug.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.