用无像差线扫描共聚焦拉曼成像仪快速、无标记检测结直肠癌

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Changwei Jiao , Miaoliang Chen , Jiaqi Liao , Jialun Li , Ruili Zhang , Sailing He
{"title":"用无像差线扫描共聚焦拉曼成像仪快速、无标记检测结直肠癌","authors":"Changwei Jiao ,&nbsp;Miaoliang Chen ,&nbsp;Jiaqi Liao ,&nbsp;Jialun Li ,&nbsp;Ruili Zhang ,&nbsp;Sailing He","doi":"10.1016/j.saa.2025.126182","DOIUrl":null,"url":null,"abstract":"<div><div>A self-developed aberration-free line scanning confocal Raman imager (AFLSCRI) with a spectral resolution of 0.12 nm and a spatial resolution of 2 μm is utilized to diagnose colorectal cancer. The tissues were categorized into four subgroups (typical tissue, lipid-rich tissue, fat-rich tissue, and collagen-rich tissue) and were successfully distinguished with our Raman imaging results. Compared to traditional point-scanning Raman spectroscopy, this imager offers a much faster speed with high spectral resolution while maintaining a similar spatial resolution. The Raman spectroscopy results of the same sample of colorectal cancer remain stable and unaffected even measured after six months. The molecular composition of the tissues was analyzed, and potential biomarkers such as carotenoids and protein structures were identified for four different types of colorectal tissues. When combined with machine learning algorithms, an accuracy of 92.8% was achieved in identifying 14 pairs of normal/cancer samples. These results highlight the great potential of the AFLSCRI in label-free, rapid, and non-invasive medical diagnosis.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"339 ","pages":"Article 126182"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid, label-free detection of colorectal cancer with an aberration-free line scanning confocal Raman imager\",\"authors\":\"Changwei Jiao ,&nbsp;Miaoliang Chen ,&nbsp;Jiaqi Liao ,&nbsp;Jialun Li ,&nbsp;Ruili Zhang ,&nbsp;Sailing He\",\"doi\":\"10.1016/j.saa.2025.126182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A self-developed aberration-free line scanning confocal Raman imager (AFLSCRI) with a spectral resolution of 0.12 nm and a spatial resolution of 2 μm is utilized to diagnose colorectal cancer. The tissues were categorized into four subgroups (typical tissue, lipid-rich tissue, fat-rich tissue, and collagen-rich tissue) and were successfully distinguished with our Raman imaging results. Compared to traditional point-scanning Raman spectroscopy, this imager offers a much faster speed with high spectral resolution while maintaining a similar spatial resolution. The Raman spectroscopy results of the same sample of colorectal cancer remain stable and unaffected even measured after six months. The molecular composition of the tissues was analyzed, and potential biomarkers such as carotenoids and protein structures were identified for four different types of colorectal tissues. When combined with machine learning algorithms, an accuracy of 92.8% was achieved in identifying 14 pairs of normal/cancer samples. These results highlight the great potential of the AFLSCRI in label-free, rapid, and non-invasive medical diagnosis.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"339 \",\"pages\":\"Article 126182\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525004883\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004883","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

利用自主研制的光谱分辨率为0.12 nm、空间分辨率为2 μm的无像差线扫描共聚焦拉曼成像仪(AFLSCRI)诊断结直肠癌。这些组织被分为四个亚组(典型组织、富脂组织、富脂肪组织和富胶原组织),并通过我们的拉曼成像结果成功区分。与传统的点扫描拉曼光谱相比,该成像仪提供了更快的速度和高光谱分辨率,同时保持了相似的空间分辨率。同一结直肠癌样本的拉曼光谱结果在六个月后仍保持稳定且不受影响。分析了组织的分子组成,并确定了四种不同类型结直肠组织的潜在生物标志物,如类胡萝卜素和蛋白质结构。当与机器学习算法相结合时,在识别14对正常/癌症样本时,准确率达到92.8%。这些结果突出了AFLSCRI在无标签、快速和非侵入性医疗诊断方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid, label-free detection of colorectal cancer with an aberration-free line scanning confocal Raman imager

Rapid, label-free detection of colorectal cancer with an aberration-free line scanning confocal Raman imager
A self-developed aberration-free line scanning confocal Raman imager (AFLSCRI) with a spectral resolution of 0.12 nm and a spatial resolution of 2 μm is utilized to diagnose colorectal cancer. The tissues were categorized into four subgroups (typical tissue, lipid-rich tissue, fat-rich tissue, and collagen-rich tissue) and were successfully distinguished with our Raman imaging results. Compared to traditional point-scanning Raman spectroscopy, this imager offers a much faster speed with high spectral resolution while maintaining a similar spatial resolution. The Raman spectroscopy results of the same sample of colorectal cancer remain stable and unaffected even measured after six months. The molecular composition of the tissues was analyzed, and potential biomarkers such as carotenoids and protein structures were identified for four different types of colorectal tissues. When combined with machine learning algorithms, an accuracy of 92.8% was achieved in identifying 14 pairs of normal/cancer samples. These results highlight the great potential of the AFLSCRI in label-free, rapid, and non-invasive medical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信