Kai Yang , JiaMing Wang , GeGe Zhao , XuAn Wang , Wei Cong , ManZheng Yuan , JiaXiong Luo , XiaoFang Dong , JiaRui Wang , Jing Tao
{"title":"NIDS-CNNRF集成了CNN和随机森林的高效网络入侵检测模型","authors":"Kai Yang , JiaMing Wang , GeGe Zhao , XuAn Wang , Wei Cong , ManZheng Yuan , JiaXiong Luo , XiaoFang Dong , JiaRui Wang , Jing Tao","doi":"10.1016/j.iot.2025.101607","DOIUrl":null,"url":null,"abstract":"<div><div>Network intrusion detection is crucial for enhancing network security; however, existing models face three prominent challenges. First, many models place too much emphasis on overall accuracy, often neglecting the accurate distinction between different types of attacks. Second, due to feature redundancy in complex high-dimensional attack traffic, these models struggle to extract key information from large feature sets. Lastly, when dealing with imbalanced datasets, models tend to focus on learning from classes with larger sample sizes, thus overlooking those with fewer instances. To address these issues, this paper proposes a novel network intrusion detection model, NIDS-CNNRF. This model integrates Convolutional Neural Networks (CNN) for feature extraction and Random Forest (RF) for classifying attack traffic, enabling precise identification of various attack types. The Adaptive Synthetic Sampling (ADASYN) algorithm is employed to mitigate the bias toward classes with larger sample sizes, while Principal Component Analysis (PCA) is used to address feature redundancy, allowing the model to effectively extract key information. Experimental results demonstrate that the NIDS-CNNRF model significantly outperforms traditional intrusion detection models in enhancing network security, with superior performance observed on the KDD CUP99, NSL_KDD, CIC-IDS2017, and CIC-IDS2018 datasets.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"32 ","pages":"Article 101607"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIDS-CNNRF integrating CNN and random forest for efficient network intrusion detection model\",\"authors\":\"Kai Yang , JiaMing Wang , GeGe Zhao , XuAn Wang , Wei Cong , ManZheng Yuan , JiaXiong Luo , XiaoFang Dong , JiaRui Wang , Jing Tao\",\"doi\":\"10.1016/j.iot.2025.101607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Network intrusion detection is crucial for enhancing network security; however, existing models face three prominent challenges. First, many models place too much emphasis on overall accuracy, often neglecting the accurate distinction between different types of attacks. Second, due to feature redundancy in complex high-dimensional attack traffic, these models struggle to extract key information from large feature sets. Lastly, when dealing with imbalanced datasets, models tend to focus on learning from classes with larger sample sizes, thus overlooking those with fewer instances. To address these issues, this paper proposes a novel network intrusion detection model, NIDS-CNNRF. This model integrates Convolutional Neural Networks (CNN) for feature extraction and Random Forest (RF) for classifying attack traffic, enabling precise identification of various attack types. The Adaptive Synthetic Sampling (ADASYN) algorithm is employed to mitigate the bias toward classes with larger sample sizes, while Principal Component Analysis (PCA) is used to address feature redundancy, allowing the model to effectively extract key information. Experimental results demonstrate that the NIDS-CNNRF model significantly outperforms traditional intrusion detection models in enhancing network security, with superior performance observed on the KDD CUP99, NSL_KDD, CIC-IDS2017, and CIC-IDS2018 datasets.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"32 \",\"pages\":\"Article 101607\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525001209\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001209","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
NIDS-CNNRF integrating CNN and random forest for efficient network intrusion detection model
Network intrusion detection is crucial for enhancing network security; however, existing models face three prominent challenges. First, many models place too much emphasis on overall accuracy, often neglecting the accurate distinction between different types of attacks. Second, due to feature redundancy in complex high-dimensional attack traffic, these models struggle to extract key information from large feature sets. Lastly, when dealing with imbalanced datasets, models tend to focus on learning from classes with larger sample sizes, thus overlooking those with fewer instances. To address these issues, this paper proposes a novel network intrusion detection model, NIDS-CNNRF. This model integrates Convolutional Neural Networks (CNN) for feature extraction and Random Forest (RF) for classifying attack traffic, enabling precise identification of various attack types. The Adaptive Synthetic Sampling (ADASYN) algorithm is employed to mitigate the bias toward classes with larger sample sizes, while Principal Component Analysis (PCA) is used to address feature redundancy, allowing the model to effectively extract key information. Experimental results demonstrate that the NIDS-CNNRF model significantly outperforms traditional intrusion detection models in enhancing network security, with superior performance observed on the KDD CUP99, NSL_KDD, CIC-IDS2017, and CIC-IDS2018 datasets.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.