Rodrigo Sanches Pires , Antonio J. Capezza , Mathias Johansson , Maud Langton , Christofer Lendel
{"title":"通过纤维延伸扩增的种子诱导乳清蛋白凝胶化","authors":"Rodrigo Sanches Pires , Antonio J. Capezza , Mathias Johansson , Maud Langton , Christofer Lendel","doi":"10.1016/j.foodhyd.2025.111424","DOIUrl":null,"url":null,"abstract":"<div><div>Protein nanofibrils (PNFs), especially those from the whey protein β-lactoglobulin, hold the promise for applications in food technology, medicine, and sustainable materials. In this work, we explore the mechanisms underlying the sol-gel transition of whey protein isolate triggered by pre-fragmented whey fibrils (seeds) at low pH and high temperature. We show that, under these conditions, the formed hydrogels are constructed from PNFs. The presented results suggest that the seeds amplify the fibril growth process by providing active ends that capture peptide monomers produced via acid hydrolysis. This changes the fibrils' length distribution (up to 10-fold increase of their average contour length), and the samples reach the percolation threshold at a much lower mass concentration of fibrils. We also note that seeding has a strong impact on morphology and catalyzes a conversion of short, curved fibrils into long straight ones, which also contribute to the lower percolation limit. Rheological measurements indicate that attractive inter-fibrillar forces stabilize the PNF network. This is further evidenced by the gels’ resistance to disassembly across a wide pH range, implying that other forces than electrostatics are important for stabilizing the fibrillar network. Finally, we discuss the nature of the sol-gel transition based on continuum percolation theory, which corroborates the observed relationship between PNF length distribution and the sol-gel transition.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"167 ","pages":"Article 111424"},"PeriodicalIF":11.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seed-induced gelation of whey protein via fibril elongation amplification\",\"authors\":\"Rodrigo Sanches Pires , Antonio J. Capezza , Mathias Johansson , Maud Langton , Christofer Lendel\",\"doi\":\"10.1016/j.foodhyd.2025.111424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein nanofibrils (PNFs), especially those from the whey protein β-lactoglobulin, hold the promise for applications in food technology, medicine, and sustainable materials. In this work, we explore the mechanisms underlying the sol-gel transition of whey protein isolate triggered by pre-fragmented whey fibrils (seeds) at low pH and high temperature. We show that, under these conditions, the formed hydrogels are constructed from PNFs. The presented results suggest that the seeds amplify the fibril growth process by providing active ends that capture peptide monomers produced via acid hydrolysis. This changes the fibrils' length distribution (up to 10-fold increase of their average contour length), and the samples reach the percolation threshold at a much lower mass concentration of fibrils. We also note that seeding has a strong impact on morphology and catalyzes a conversion of short, curved fibrils into long straight ones, which also contribute to the lower percolation limit. Rheological measurements indicate that attractive inter-fibrillar forces stabilize the PNF network. This is further evidenced by the gels’ resistance to disassembly across a wide pH range, implying that other forces than electrostatics are important for stabilizing the fibrillar network. Finally, we discuss the nature of the sol-gel transition based on continuum percolation theory, which corroborates the observed relationship between PNF length distribution and the sol-gel transition.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"167 \",\"pages\":\"Article 111424\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X25003844\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25003844","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Seed-induced gelation of whey protein via fibril elongation amplification
Protein nanofibrils (PNFs), especially those from the whey protein β-lactoglobulin, hold the promise for applications in food technology, medicine, and sustainable materials. In this work, we explore the mechanisms underlying the sol-gel transition of whey protein isolate triggered by pre-fragmented whey fibrils (seeds) at low pH and high temperature. We show that, under these conditions, the formed hydrogels are constructed from PNFs. The presented results suggest that the seeds amplify the fibril growth process by providing active ends that capture peptide monomers produced via acid hydrolysis. This changes the fibrils' length distribution (up to 10-fold increase of their average contour length), and the samples reach the percolation threshold at a much lower mass concentration of fibrils. We also note that seeding has a strong impact on morphology and catalyzes a conversion of short, curved fibrils into long straight ones, which also contribute to the lower percolation limit. Rheological measurements indicate that attractive inter-fibrillar forces stabilize the PNF network. This is further evidenced by the gels’ resistance to disassembly across a wide pH range, implying that other forces than electrostatics are important for stabilizing the fibrillar network. Finally, we discuss the nature of the sol-gel transition based on continuum percolation theory, which corroborates the observed relationship between PNF length distribution and the sol-gel transition.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.