评估脂肪酶介导的2,5-二甲酰呋喃氧化到2,5-呋喃二羧酸的工业优势:旋转床反应器,“无酰基”氧化概念和环境方面

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
Milica Milić, Guillem Vernet, Hai Yen Le, Ningning Zhang, Emil Byström, Pablo Domínguez de María* and Selin Kara*, 
{"title":"评估脂肪酶介导的2,5-二甲酰呋喃氧化到2,5-呋喃二羧酸的工业优势:旋转床反应器,“无酰基”氧化概念和环境方面","authors":"Milica Milić,&nbsp;Guillem Vernet,&nbsp;Hai Yen Le,&nbsp;Ningning Zhang,&nbsp;Emil Byström,&nbsp;Pablo Domínguez de\r\nMaría* and Selin Kara*,&nbsp;","doi":"10.1021/acs.oprd.4c0047410.1021/acs.oprd.4c00474","DOIUrl":null,"url":null,"abstract":"<p >The lipase-mediated oxidation of 2,5-diformylfuran (DFF) to 2,5-furandicarboxylic acid (FDCA) via peracid formation is a promising alternative to valorizing furans from biorefineries. In this chemoenzymatic reaction, <i>Candida antarctica</i>lipase B (CALB) uses hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and ethyl acetate as an acyl donor to form peracetic acid <i>in situ</i>, which subsequently performs the oxidation of DFF to FDCA, via the intermediate 5-formyl-2-furancarboxylic acid (FFCA). This study explores the reaction en route to its industrial application, identifying strengths and limitations. First, the origin of DFF is considered since it can proceed from biorefineries either in organic media or in aqueous solutions. The reaction is assessed in ethyl acetate with different water contents, showing that oxidations can be achieved in wet nonaqueous media. Moreover, a mixture of ethyl acetate and <i>tert</i>-butanol improves the FDCA yield 2-fold. Subsequently, the reaction is conducted using a rotating bed reactor (RBR), which may enable straightforward downstream processing while showing hints for future scale-up. Once H<sub>2</sub>O<sub>2</sub> dosage, rotating rate, and enzyme and substrate loadings are optimized, FDCA production of up to ∼27 g/L is achieved, yet still at low DFF selectivity (∼50%). To improve the atom economy of the reaction and enhance the option of organic media recycling, which saves significant CO<sub>2</sub> generation during incineration, an “acyl-donor-free” concept of the lipase-mediated oxidation of DFF to FDCA is proposed, which uses catalytic amounts of FDCA to be taken by the lipase to generate per-FDCA, to oxidize DFF to form the desired product subsequently. Overall, the enzyme-mediated oxidation of DFF to FDCA may become relevant in biorefineries if improvements in the enzyme stability (against H<sub>2</sub>O<sub>2</sub> and peracids), as well as in process conditions (e.g., H<sub>2</sub>O<sub>2</sub> and substrate addition, downstream, etc.) are adequately tuned.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 4","pages":"1058–1066 1058–1066"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Industrial Edge of the Lipase-Mediated Oxidation of 2,5-Diformylfuran to 2,5-Furandicarboxylic Acid: Rotating Bed Reactors, an “Acyl-Donor-Free” Oxidation Concept, and Environmental Aspects\",\"authors\":\"Milica Milić,&nbsp;Guillem Vernet,&nbsp;Hai Yen Le,&nbsp;Ningning Zhang,&nbsp;Emil Byström,&nbsp;Pablo Domínguez de\\r\\nMaría* and Selin Kara*,&nbsp;\",\"doi\":\"10.1021/acs.oprd.4c0047410.1021/acs.oprd.4c00474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The lipase-mediated oxidation of 2,5-diformylfuran (DFF) to 2,5-furandicarboxylic acid (FDCA) via peracid formation is a promising alternative to valorizing furans from biorefineries. In this chemoenzymatic reaction, <i>Candida antarctica</i>lipase B (CALB) uses hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and ethyl acetate as an acyl donor to form peracetic acid <i>in situ</i>, which subsequently performs the oxidation of DFF to FDCA, via the intermediate 5-formyl-2-furancarboxylic acid (FFCA). This study explores the reaction en route to its industrial application, identifying strengths and limitations. First, the origin of DFF is considered since it can proceed from biorefineries either in organic media or in aqueous solutions. The reaction is assessed in ethyl acetate with different water contents, showing that oxidations can be achieved in wet nonaqueous media. Moreover, a mixture of ethyl acetate and <i>tert</i>-butanol improves the FDCA yield 2-fold. Subsequently, the reaction is conducted using a rotating bed reactor (RBR), which may enable straightforward downstream processing while showing hints for future scale-up. Once H<sub>2</sub>O<sub>2</sub> dosage, rotating rate, and enzyme and substrate loadings are optimized, FDCA production of up to ∼27 g/L is achieved, yet still at low DFF selectivity (∼50%). To improve the atom economy of the reaction and enhance the option of organic media recycling, which saves significant CO<sub>2</sub> generation during incineration, an “acyl-donor-free” concept of the lipase-mediated oxidation of DFF to FDCA is proposed, which uses catalytic amounts of FDCA to be taken by the lipase to generate per-FDCA, to oxidize DFF to form the desired product subsequently. Overall, the enzyme-mediated oxidation of DFF to FDCA may become relevant in biorefineries if improvements in the enzyme stability (against H<sub>2</sub>O<sub>2</sub> and peracids), as well as in process conditions (e.g., H<sub>2</sub>O<sub>2</sub> and substrate addition, downstream, etc.) are adequately tuned.</p>\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"29 4\",\"pages\":\"1058–1066 1058–1066\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00474\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00474","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

脂酶介导的过氧化氢反应将2,5-二甲酰呋喃(DFF)氧化为2,5-呋喃二羧酸(FDCA),是生物炼制呋喃的一种很有前途的替代方法。在这个化学酶促反应中,南极念珠菌脂酶B (CALB)使用过氧化氢(H2O2)和乙酸乙酯作为酰基供体原位生成过氧乙酸,然后通过中间产物5-甲酰基-2-呋喃羧酸(FFCA)将DFF氧化为FDCA。本研究探讨了其工业应用过程中的反应,确定了其优势和局限性。首先,考虑了DFF的起源,因为它可以在有机介质或水溶液中从生物精炼厂进行。该反应在不同含水量的乙酸乙酯中进行了评估,表明在湿非水介质中可以实现氧化。此外,乙酸乙酯和叔丁醇的混合物使FDCA的产率提高了2倍。随后,使用旋转床反应器(RBR)进行反应,这可以实现直接的下游处理,同时为未来的规模扩大提供线索。一旦H2O2用量、旋转速率、酶和底物负载得到优化,FDCA的产量可达~ 27 g/L,但DFF的选择性仍然很低(~ 50%)。为了提高反应的原子经济性,增加有机介质回收的选择,从而在焚烧过程中节省大量的二氧化碳产生,提出了脂肪酶介导的DFF氧化成FDCA的“无酰基供体”概念,即利用脂肪酶催化量的FDCA生成per-FDCA,随后氧化DFF形成所需的产物。总的来说,如果酶的稳定性(对H2O2和过酸)以及工艺条件(例如H2O2和底物添加,下游等)得到适当调整,酶介导的DFF氧化成FDCA可能与生物炼制有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing the Industrial Edge of the Lipase-Mediated Oxidation of 2,5-Diformylfuran to 2,5-Furandicarboxylic Acid: Rotating Bed Reactors, an “Acyl-Donor-Free” Oxidation Concept, and Environmental Aspects

Assessing the Industrial Edge of the Lipase-Mediated Oxidation of 2,5-Diformylfuran to 2,5-Furandicarboxylic Acid: Rotating Bed Reactors, an “Acyl-Donor-Free” Oxidation Concept, and Environmental Aspects

The lipase-mediated oxidation of 2,5-diformylfuran (DFF) to 2,5-furandicarboxylic acid (FDCA) via peracid formation is a promising alternative to valorizing furans from biorefineries. In this chemoenzymatic reaction, Candida antarcticalipase B (CALB) uses hydrogen peroxide (H2O2) and ethyl acetate as an acyl donor to form peracetic acid in situ, which subsequently performs the oxidation of DFF to FDCA, via the intermediate 5-formyl-2-furancarboxylic acid (FFCA). This study explores the reaction en route to its industrial application, identifying strengths and limitations. First, the origin of DFF is considered since it can proceed from biorefineries either in organic media or in aqueous solutions. The reaction is assessed in ethyl acetate with different water contents, showing that oxidations can be achieved in wet nonaqueous media. Moreover, a mixture of ethyl acetate and tert-butanol improves the FDCA yield 2-fold. Subsequently, the reaction is conducted using a rotating bed reactor (RBR), which may enable straightforward downstream processing while showing hints for future scale-up. Once H2O2 dosage, rotating rate, and enzyme and substrate loadings are optimized, FDCA production of up to ∼27 g/L is achieved, yet still at low DFF selectivity (∼50%). To improve the atom economy of the reaction and enhance the option of organic media recycling, which saves significant CO2 generation during incineration, an “acyl-donor-free” concept of the lipase-mediated oxidation of DFF to FDCA is proposed, which uses catalytic amounts of FDCA to be taken by the lipase to generate per-FDCA, to oxidize DFF to form the desired product subsequently. Overall, the enzyme-mediated oxidation of DFF to FDCA may become relevant in biorefineries if improvements in the enzyme stability (against H2O2 and peracids), as well as in process conditions (e.g., H2O2 and substrate addition, downstream, etc.) are adequately tuned.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信