神经形态计算中单器件几何中的双SOT切换模式

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abhijeet Ranjan, Tamkeen Farooq, Chong-Chi Chi, Hsin-Ya Sung, Rudis Ismael Salinas Padilla, Po-Hung Lin, Wen-Wei Wu, Ming-Yen Lu, Rahul Mishra, Chih-Huang Lai
{"title":"神经形态计算中单器件几何中的双SOT切换模式","authors":"Abhijeet Ranjan, Tamkeen Farooq, Chong-Chi Chi, Hsin-Ya Sung, Rudis Ismael Salinas Padilla, Po-Hung Lin, Wen-Wei Wu, Ming-Yen Lu, Rahul Mishra, Chih-Huang Lai","doi":"10.1021/acs.nanolett.5c01100","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing aims to replicate the brain’s efficient processing through artificial neurons and synapses, requiring binary and multilevel switching. We present a PtMn/(Co/Pd)<sub>4</sub>/Ta device that uniquely enables dual spin–orbit torque (SOT) switching modes─binary and multilevel (analog)─within the same geometry and stack structure, eliminating the need for device modifications. Binary SOT switching is achieved via domain wall nucleation and propagation at moderate current levels (∼65 mA), while multilevel switching occurs via domain nucleation mode without significant propagation after a high-current treatment (∼85 mA). The transition between two modes originates from structural changes after the current treatment. These modes allow for neuronal and synaptic functionalities, with the device achieving 96% accuracy in digit/letter recognition on the MNIST data set using an artificial neural network (ANN). The device’s robust perpendicular magnetic anisotropy (PMA), dual-mode switching under a small in-plane field (<i>H</i><sub>X</sub>), and simplified fabrication underscore its promise as an energy-efficient solution for neuromorphic computing.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"26 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual SOT Switching Modes in a Single Device Geometry for Neuromorphic Computing\",\"authors\":\"Abhijeet Ranjan, Tamkeen Farooq, Chong-Chi Chi, Hsin-Ya Sung, Rudis Ismael Salinas Padilla, Po-Hung Lin, Wen-Wei Wu, Ming-Yen Lu, Rahul Mishra, Chih-Huang Lai\",\"doi\":\"10.1021/acs.nanolett.5c01100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing aims to replicate the brain’s efficient processing through artificial neurons and synapses, requiring binary and multilevel switching. We present a PtMn/(Co/Pd)<sub>4</sub>/Ta device that uniquely enables dual spin–orbit torque (SOT) switching modes─binary and multilevel (analog)─within the same geometry and stack structure, eliminating the need for device modifications. Binary SOT switching is achieved via domain wall nucleation and propagation at moderate current levels (∼65 mA), while multilevel switching occurs via domain nucleation mode without significant propagation after a high-current treatment (∼85 mA). The transition between two modes originates from structural changes after the current treatment. These modes allow for neuronal and synaptic functionalities, with the device achieving 96% accuracy in digit/letter recognition on the MNIST data set using an artificial neural network (ANN). The device’s robust perpendicular magnetic anisotropy (PMA), dual-mode switching under a small in-plane field (<i>H</i><sub>X</sub>), and simplified fabrication underscore its promise as an energy-efficient solution for neuromorphic computing.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01100\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01100","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算旨在通过人工神经元和突触复制大脑的高效处理,需要二进制和多级转换。我们提出了一种PtMn/(Co/Pd)4/Ta器件,该器件独特地在相同的几何形状和堆叠结构中实现双自旋-轨道扭矩(SOT)开关模式─二进制和多电平(模拟)─,从而消除了对器件修改的需要。二进制SOT开关在中等电流水平(~ 65 mA)下通过畴壁成核和传播实现,而多电平开关在大电流处理(~ 85 mA)后通过畴成核模式发生,没有显著的传播。两种模式之间的转换源于当前处理后的结构变化。这些模式允许神经元和突触功能,该设备使用人工神经网络(ANN)在MNIST数据集上实现96%的数字/字母识别准确率。该器件具有强大的垂直磁各向异性(PMA)、小面内场(HX)下的双模开关和简化的制造工艺,突显了其作为神经形态计算节能解决方案的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual SOT Switching Modes in a Single Device Geometry for Neuromorphic Computing

Dual SOT Switching Modes in a Single Device Geometry for Neuromorphic Computing
Neuromorphic computing aims to replicate the brain’s efficient processing through artificial neurons and synapses, requiring binary and multilevel switching. We present a PtMn/(Co/Pd)4/Ta device that uniquely enables dual spin–orbit torque (SOT) switching modes─binary and multilevel (analog)─within the same geometry and stack structure, eliminating the need for device modifications. Binary SOT switching is achieved via domain wall nucleation and propagation at moderate current levels (∼65 mA), while multilevel switching occurs via domain nucleation mode without significant propagation after a high-current treatment (∼85 mA). The transition between two modes originates from structural changes after the current treatment. These modes allow for neuronal and synaptic functionalities, with the device achieving 96% accuracy in digit/letter recognition on the MNIST data set using an artificial neural network (ANN). The device’s robust perpendicular magnetic anisotropy (PMA), dual-mode switching under a small in-plane field (HX), and simplified fabrication underscore its promise as an energy-efficient solution for neuromorphic computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信