氟工程诱导NiCo2O4相变以增强析氧反应中活性基序的形成

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ya Yue, Xinyu Zhong, Mingzi Sun, Jing Du, Wensheng Gao, Wei Hu, Chunyang Zhao, Jiong Li, Bolong Huang, Zelong Li, Can Li
{"title":"氟工程诱导NiCo2O4相变以增强析氧反应中活性基序的形成","authors":"Ya Yue,&nbsp;Xinyu Zhong,&nbsp;Mingzi Sun,&nbsp;Jing Du,&nbsp;Wensheng Gao,&nbsp;Wei Hu,&nbsp;Chunyang Zhao,&nbsp;Jiong Li,&nbsp;Bolong Huang,&nbsp;Zelong Li,&nbsp;Can Li","doi":"10.1002/adma.202418058","DOIUrl":null,"url":null,"abstract":"<p>Dynamic reconstruction of catalysts is key to active site formation in alkaline oxygen evolution reaction (OER), but precise control over this process remains challenging. Herein, F-doped NiCo<sub>2</sub>O<sub>4</sub> (NiCo<sub>2</sub>O<sub>4</sub>-F<sub>n</sub>), consisting of a NiCo<sub>2</sub>O<sub>4</sub> core and a (NH<sub>4</sub>)Ni<sub>x</sub>Co<sub>1−x</sub>F<sub>3</sub> shell is reported, which promotes the formation of a dual-metal NiCoOOH active phase. In situ Raman and X-ray absorption fine structure analyses reveal that the NiCoOOH, rich in oxygen vacancies (O<sub>v</sub>), forms at 1.2 V versus the reversible hydrogen electrode (RHE) for NiCo<sub>2</sub>O<sub>4</sub>-F<sub>1</sub>, in contrast to the NiOOH phase formation at 1.4 V versus RHE for undoped NiCo<sub>2</sub>O<sub>4</sub>. This is facilitated by the transformation of (NH<sub>4</sub>)Ni<sub>x</sub>Co<sub>1−x</sub>F<sub>3</sub> into amorphous Ni<sub>x</sub>Co<sub>1−x</sub>(OH)<sub>2</sub> in the KOH electrolyte without bias. Electrochemical tests show that NiCo<sub>2</sub>O<sub>4</sub>-F<sub>1</sub> exhibits a 14-fold increase in intrinsic activity compared to NiCo<sub>2</sub>O<sub>4</sub>. Theoretical calculations suggest that O<sub>v</sub>-induced unsaturated Co and Ni sites enhance electroactivity by promoting <sup>*</sup>OH intermediates adsorption and conversion, lowering the OER energy barrier. The oriented control of NiCoOOH active motifs in NiCo<sub>2</sub>O<sub>4</sub> spinel, achieved through fluorine engineering, paves a new avenue for designing efficient OER electrocatalysts.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 27","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine Engineering Induces Phase Transformation in NiCo2O4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction\",\"authors\":\"Ya Yue,&nbsp;Xinyu Zhong,&nbsp;Mingzi Sun,&nbsp;Jing Du,&nbsp;Wensheng Gao,&nbsp;Wei Hu,&nbsp;Chunyang Zhao,&nbsp;Jiong Li,&nbsp;Bolong Huang,&nbsp;Zelong Li,&nbsp;Can Li\",\"doi\":\"10.1002/adma.202418058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic reconstruction of catalysts is key to active site formation in alkaline oxygen evolution reaction (OER), but precise control over this process remains challenging. Herein, F-doped NiCo<sub>2</sub>O<sub>4</sub> (NiCo<sub>2</sub>O<sub>4</sub>-F<sub>n</sub>), consisting of a NiCo<sub>2</sub>O<sub>4</sub> core and a (NH<sub>4</sub>)Ni<sub>x</sub>Co<sub>1−x</sub>F<sub>3</sub> shell is reported, which promotes the formation of a dual-metal NiCoOOH active phase. In situ Raman and X-ray absorption fine structure analyses reveal that the NiCoOOH, rich in oxygen vacancies (O<sub>v</sub>), forms at 1.2 V versus the reversible hydrogen electrode (RHE) for NiCo<sub>2</sub>O<sub>4</sub>-F<sub>1</sub>, in contrast to the NiOOH phase formation at 1.4 V versus RHE for undoped NiCo<sub>2</sub>O<sub>4</sub>. This is facilitated by the transformation of (NH<sub>4</sub>)Ni<sub>x</sub>Co<sub>1−x</sub>F<sub>3</sub> into amorphous Ni<sub>x</sub>Co<sub>1−x</sub>(OH)<sub>2</sub> in the KOH electrolyte without bias. Electrochemical tests show that NiCo<sub>2</sub>O<sub>4</sub>-F<sub>1</sub> exhibits a 14-fold increase in intrinsic activity compared to NiCo<sub>2</sub>O<sub>4</sub>. Theoretical calculations suggest that O<sub>v</sub>-induced unsaturated Co and Ni sites enhance electroactivity by promoting <sup>*</sup>OH intermediates adsorption and conversion, lowering the OER energy barrier. The oriented control of NiCoOOH active motifs in NiCo<sub>2</sub>O<sub>4</sub> spinel, achieved through fluorine engineering, paves a new avenue for designing efficient OER electrocatalysts.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 27\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202418058\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202418058","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

催化剂的动态重构是碱性析氧反应(OER)中活性位点形成的关键,但对这一过程的精确控制仍然具有挑战性。本文报道了由NiCo2O4核心和(NH4)NixCo1−xF3壳层组成的f掺杂NiCo2O4 (NiCo2O4- fn),促进了双金属NiCoOOH活性相的形成。原位拉曼和x射线吸收精细结构分析表明,NiCo2O4- f1在1.2 V时与可逆氢电极(RHE)形成富氧空位(Ov)的NiCoOOH,而未掺杂的NiCo2O4在1.4 V时与RHE形成NiOOH相。这是由于(NH4)NixCo1−xF3在KOH电解液中无偏压地转变成无定形NixCo1−x(OH)2。电化学测试表明,NiCo2O4- f1的内在活性比NiCo2O4提高了14倍。理论计算表明,ov诱导的不饱和Co和Ni位点通过促进*OH中间体的吸附和转化,降低OER能垒来增强电活性。通过氟工程实现NiCo2O4尖晶石中NiCoOOH活性基序的定向控制,为设计高效的OER电催化剂开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorine Engineering Induces Phase Transformation in NiCo2O4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction

Fluorine Engineering Induces Phase Transformation in NiCo2O4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction

Fluorine Engineering Induces Phase Transformation in NiCo2O4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction

Fluorine Engineering Induces Phase Transformation in NiCo2O4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction

Fluorine Engineering Induces Phase Transformation in NiCo2O4 for Enhanced Active Motifs Formation in Oxygen Evolution Reaction

Dynamic reconstruction of catalysts is key to active site formation in alkaline oxygen evolution reaction (OER), but precise control over this process remains challenging. Herein, F-doped NiCo2O4 (NiCo2O4-Fn), consisting of a NiCo2O4 core and a (NH4)NixCo1−xF3 shell is reported, which promotes the formation of a dual-metal NiCoOOH active phase. In situ Raman and X-ray absorption fine structure analyses reveal that the NiCoOOH, rich in oxygen vacancies (Ov), forms at 1.2 V versus the reversible hydrogen electrode (RHE) for NiCo2O4-F1, in contrast to the NiOOH phase formation at 1.4 V versus RHE for undoped NiCo2O4. This is facilitated by the transformation of (NH4)NixCo1−xF3 into amorphous NixCo1−x(OH)2 in the KOH electrolyte without bias. Electrochemical tests show that NiCo2O4-F1 exhibits a 14-fold increase in intrinsic activity compared to NiCo2O4. Theoretical calculations suggest that Ov-induced unsaturated Co and Ni sites enhance electroactivity by promoting *OH intermediates adsorption and conversion, lowering the OER energy barrier. The oriented control of NiCoOOH active motifs in NiCo2O4 spinel, achieved through fluorine engineering, paves a new avenue for designing efficient OER electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信