Sezin Galioglu, Mehdi Hagverdiyev, Meryem M. Doğan, Özgün Yavuz, Ü. Seleme Nizam, Ghaith Makey, Aladin Şura, Mesut Laçin, Burcu Akata Kurç, Parviz Elahi, F. Ömer Ilday, Serim Ilday
{"title":"沸石的超快激光合成","authors":"Sezin Galioglu, Mehdi Hagverdiyev, Meryem M. Doğan, Özgün Yavuz, Ü. Seleme Nizam, Ghaith Makey, Aladin Şura, Mesut Laçin, Burcu Akata Kurç, Parviz Elahi, F. Ömer Ilday, Serim Ilday","doi":"10.1002/adma.202415562","DOIUrl":null,"url":null,"abstract":"<p>Research demonstrates that zeolite nucleation and growth can be controlled by fine-tuning chemical composition, temperature, and pressure, resulting in structures with diverse porosities and functionalities. Nevertheless, current energy delivery methods lack the finesse required to operate on the femto- and picosecond timescales of silica polymerization and depolymerization, limiting their ability to direct synthesis with high precision. To overcome this limitation, an ultrafast laser synthesis technique is introduced, capable of delivering energy at these timescales with unprecedented spatiotemporal precision. Unlike conventional or emerging approaches, this method bypasses the need for specific temperature and pressure settings, as nucleation and growth are governed by dynamic phenomena arising from nonlinear light–matter interactions, such as convective flows, cavitation bubbles, plasma formation, and shock waves. These processes can be initiated, paused, and resumed within fractions of a second, effectively “freezing” structures at any stage of self-assembly. Using this approach, the entire nucleation and growth pathway of laser-synthesized TPA-silicate-1 zeolites is traced, from early oligomer formation to fully developed crystals. The unprecedented spatiotemporal control of this technique unlocks new avenues for manipulating reaction pathways and exploring the vast configurational space of zeolites.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 29","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202415562","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Laser Synthesis of Zeolites\",\"authors\":\"Sezin Galioglu, Mehdi Hagverdiyev, Meryem M. Doğan, Özgün Yavuz, Ü. Seleme Nizam, Ghaith Makey, Aladin Şura, Mesut Laçin, Burcu Akata Kurç, Parviz Elahi, F. Ömer Ilday, Serim Ilday\",\"doi\":\"10.1002/adma.202415562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research demonstrates that zeolite nucleation and growth can be controlled by fine-tuning chemical composition, temperature, and pressure, resulting in structures with diverse porosities and functionalities. Nevertheless, current energy delivery methods lack the finesse required to operate on the femto- and picosecond timescales of silica polymerization and depolymerization, limiting their ability to direct synthesis with high precision. To overcome this limitation, an ultrafast laser synthesis technique is introduced, capable of delivering energy at these timescales with unprecedented spatiotemporal precision. Unlike conventional or emerging approaches, this method bypasses the need for specific temperature and pressure settings, as nucleation and growth are governed by dynamic phenomena arising from nonlinear light–matter interactions, such as convective flows, cavitation bubbles, plasma formation, and shock waves. These processes can be initiated, paused, and resumed within fractions of a second, effectively “freezing” structures at any stage of self-assembly. Using this approach, the entire nucleation and growth pathway of laser-synthesized TPA-silicate-1 zeolites is traced, from early oligomer formation to fully developed crystals. The unprecedented spatiotemporal control of this technique unlocks new avenues for manipulating reaction pathways and exploring the vast configurational space of zeolites.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 29\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202415562\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202415562\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202415562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research demonstrates that zeolite nucleation and growth can be controlled by fine-tuning chemical composition, temperature, and pressure, resulting in structures with diverse porosities and functionalities. Nevertheless, current energy delivery methods lack the finesse required to operate on the femto- and picosecond timescales of silica polymerization and depolymerization, limiting their ability to direct synthesis with high precision. To overcome this limitation, an ultrafast laser synthesis technique is introduced, capable of delivering energy at these timescales with unprecedented spatiotemporal precision. Unlike conventional or emerging approaches, this method bypasses the need for specific temperature and pressure settings, as nucleation and growth are governed by dynamic phenomena arising from nonlinear light–matter interactions, such as convective flows, cavitation bubbles, plasma formation, and shock waves. These processes can be initiated, paused, and resumed within fractions of a second, effectively “freezing” structures at any stage of self-assembly. Using this approach, the entire nucleation and growth pathway of laser-synthesized TPA-silicate-1 zeolites is traced, from early oligomer formation to fully developed crystals. The unprecedented spatiotemporal control of this technique unlocks new avenues for manipulating reaction pathways and exploring the vast configurational space of zeolites.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.