抑制异物反应的生物电子学用半导体聚合物的免疫兼容设计

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Nan Li, Seounghun Kang, Zhichang Liu, Shinya Wai, Zhe Cheng, Yahao Dai, Ani Solanki, Songsong Li, Yang Li, Joseph Strzalka, Michael J. V. White, Yun-Hi Kim, Bozhi Tian, Jeffrey A. Hubbell, Sihong Wang
{"title":"抑制异物反应的生物电子学用半导体聚合物的免疫兼容设计","authors":"Nan Li, Seounghun Kang, Zhichang Liu, Shinya Wai, Zhe Cheng, Yahao Dai, Ani Solanki, Songsong Li, Yang Li, Joseph Strzalka, Michael J. V. White, Yun-Hi Kim, Bozhi Tian, Jeffrey A. Hubbell, Sihong Wang","doi":"10.1038/s41563-025-02213-x","DOIUrl":null,"url":null,"abstract":"<p>One of the greatest obstacles to achieving implantable electronics with long-term functionality and minimized inflammatory reactions is the immune-mediated foreign-body response (FBR). Recently, semiconducting polymers with mixed electron–ion conductivity have been demonstrated as promising candidates to achieve direct electrical interfacing on bio-tissues. However, there is limited understanding of their immune compatibility in vivo, and strategies for minimizing the FBR through molecular design remain underexplored. Here we introduce a set of molecular design strategies for enhancing the immune compatibility of semiconducting polymers. Specifically, we show that selenophene, when incorporated in the backbone, can mitigate the FBR by suppressing macrophage activation. In addition, side-chain functionalization with immunomodulatory groups decreases the FBR further by downregulating the expression of inflammatory biomarkers. Together, our synthesized polymers achieve suppression of the FBR by as much as 68% (as indicated by the collagen density). In the meantime, these immune-compatible designs still provide a high charge-carrier mobility of around 1 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>. We anticipate that such immune-compatible design principles can be translated to a variety of conjugated polymers to suppress the FBR for implantable applications.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"22 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immune-compatible designs of semiconducting polymers for bioelectronics with suppressed foreign-body response\",\"authors\":\"Nan Li, Seounghun Kang, Zhichang Liu, Shinya Wai, Zhe Cheng, Yahao Dai, Ani Solanki, Songsong Li, Yang Li, Joseph Strzalka, Michael J. V. White, Yun-Hi Kim, Bozhi Tian, Jeffrey A. Hubbell, Sihong Wang\",\"doi\":\"10.1038/s41563-025-02213-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the greatest obstacles to achieving implantable electronics with long-term functionality and minimized inflammatory reactions is the immune-mediated foreign-body response (FBR). Recently, semiconducting polymers with mixed electron–ion conductivity have been demonstrated as promising candidates to achieve direct electrical interfacing on bio-tissues. However, there is limited understanding of their immune compatibility in vivo, and strategies for minimizing the FBR through molecular design remain underexplored. Here we introduce a set of molecular design strategies for enhancing the immune compatibility of semiconducting polymers. Specifically, we show that selenophene, when incorporated in the backbone, can mitigate the FBR by suppressing macrophage activation. In addition, side-chain functionalization with immunomodulatory groups decreases the FBR further by downregulating the expression of inflammatory biomarkers. Together, our synthesized polymers achieve suppression of the FBR by as much as 68% (as indicated by the collagen density). In the meantime, these immune-compatible designs still provide a high charge-carrier mobility of around 1 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>. We anticipate that such immune-compatible design principles can be translated to a variety of conjugated polymers to suppress the FBR for implantable applications.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02213-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02213-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实现具有长期功能和最小化炎症反应的植入式电子设备的最大障碍之一是免疫介导的异物反应(FBR)。近年来,具有混合电子-离子电导率的半导体聚合物已被证明是实现生物组织直接电界面的有希望的候选者。然而,对它们在体内的免疫相容性了解有限,并且通过分子设计最小化FBR的策略仍未得到充分探索。在这里,我们介绍了一套分子设计策略,以提高半导体聚合物的免疫相容性。具体来说,我们表明硒烯,当掺入骨干时,可以通过抑制巨噬细胞激活来减轻FBR。此外,带有免疫调节基团的侧链功能化通过下调炎症生物标志物的表达进一步降低FBR。总之,我们合成的聚合物实现了高达68%的FBR抑制(如胶原蛋白密度所示)。同时,这些免疫兼容设计仍然提供了约1 cm2 V−1 s−1的高载流子迁移率。我们期望这种免疫相容的设计原则可以转化为各种共轭聚合物,以抑制FBR的可植入应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Immune-compatible designs of semiconducting polymers for bioelectronics with suppressed foreign-body response

Immune-compatible designs of semiconducting polymers for bioelectronics with suppressed foreign-body response

One of the greatest obstacles to achieving implantable electronics with long-term functionality and minimized inflammatory reactions is the immune-mediated foreign-body response (FBR). Recently, semiconducting polymers with mixed electron–ion conductivity have been demonstrated as promising candidates to achieve direct electrical interfacing on bio-tissues. However, there is limited understanding of their immune compatibility in vivo, and strategies for minimizing the FBR through molecular design remain underexplored. Here we introduce a set of molecular design strategies for enhancing the immune compatibility of semiconducting polymers. Specifically, we show that selenophene, when incorporated in the backbone, can mitigate the FBR by suppressing macrophage activation. In addition, side-chain functionalization with immunomodulatory groups decreases the FBR further by downregulating the expression of inflammatory biomarkers. Together, our synthesized polymers achieve suppression of the FBR by as much as 68% (as indicated by the collagen density). In the meantime, these immune-compatible designs still provide a high charge-carrier mobility of around 1 cm2 V−1 s−1. We anticipate that such immune-compatible design principles can be translated to a variety of conjugated polymers to suppress the FBR for implantable applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信