Di Wu, Ioannis Eugenis, Caroline Hu, Soochi Kim, Abhijnya Kanugovi, Shouzheng Yue, Joshua R. Wheeler, Iman Fathali, Sonali Feeley, Joseph B. Shrager, Ngan F. Huang, Thomas A. Rando
{"title":"生物指导性支架促进干细胞植入功能组织再生","authors":"Di Wu, Ioannis Eugenis, Caroline Hu, Soochi Kim, Abhijnya Kanugovi, Shouzheng Yue, Joshua R. Wheeler, Iman Fathali, Sonali Feeley, Joseph B. Shrager, Ngan F. Huang, Thomas A. Rando","doi":"10.1038/s41563-025-02212-y","DOIUrl":null,"url":null,"abstract":"<p>Stem cell therapy is a promising approach for tissue regeneration after traumatic injury, yet current applications are limited by inadequate control over the fate of stem cells after transplantation. Here we introduce a bioconstruct engineered for the staged release of growth factors, tailored to direct different phases of muscle regeneration. The bioconstruct is composed of a decellularized extracellular matrix containing polymeric nanocapsules sequentially releasing basic fibroblast growth factor and insulin-like growth factor 1, which promote the proliferation and differentiation of muscle stem cells, respectively. When applied to a volumetric muscle loss defect in an animal model, the bioconstruct enhances myofibre formation, angiogenesis, innervation and functional restoration. Further, it promotes functional muscle formation with human or aged murine muscle stem cells, highlighting the translational potential of this bioconstruct. Overall, these results highlight the potential of bioconstructs with orchestrated growth factor release for stem cell therapies in traumatic injury.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"16 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration\",\"authors\":\"Di Wu, Ioannis Eugenis, Caroline Hu, Soochi Kim, Abhijnya Kanugovi, Shouzheng Yue, Joshua R. Wheeler, Iman Fathali, Sonali Feeley, Joseph B. Shrager, Ngan F. Huang, Thomas A. Rando\",\"doi\":\"10.1038/s41563-025-02212-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stem cell therapy is a promising approach for tissue regeneration after traumatic injury, yet current applications are limited by inadequate control over the fate of stem cells after transplantation. Here we introduce a bioconstruct engineered for the staged release of growth factors, tailored to direct different phases of muscle regeneration. The bioconstruct is composed of a decellularized extracellular matrix containing polymeric nanocapsules sequentially releasing basic fibroblast growth factor and insulin-like growth factor 1, which promote the proliferation and differentiation of muscle stem cells, respectively. When applied to a volumetric muscle loss defect in an animal model, the bioconstruct enhances myofibre formation, angiogenesis, innervation and functional restoration. Further, it promotes functional muscle formation with human or aged murine muscle stem cells, highlighting the translational potential of this bioconstruct. Overall, these results highlight the potential of bioconstructs with orchestrated growth factor release for stem cell therapies in traumatic injury.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02212-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02212-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration
Stem cell therapy is a promising approach for tissue regeneration after traumatic injury, yet current applications are limited by inadequate control over the fate of stem cells after transplantation. Here we introduce a bioconstruct engineered for the staged release of growth factors, tailored to direct different phases of muscle regeneration. The bioconstruct is composed of a decellularized extracellular matrix containing polymeric nanocapsules sequentially releasing basic fibroblast growth factor and insulin-like growth factor 1, which promote the proliferation and differentiation of muscle stem cells, respectively. When applied to a volumetric muscle loss defect in an animal model, the bioconstruct enhances myofibre formation, angiogenesis, innervation and functional restoration. Further, it promotes functional muscle formation with human or aged murine muscle stem cells, highlighting the translational potential of this bioconstruct. Overall, these results highlight the potential of bioconstructs with orchestrated growth factor release for stem cell therapies in traumatic injury.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.