Yingqi Zhao, Kuo Zhan, Pei-Lin Xin, Zuyan Chen, Shuai Li, Francesco De Angelis, Jian-An Huang
{"title":"深度学习模型辅助脯氨酸与羟脯氨酸的单分子 SERS 识别","authors":"Yingqi Zhao, Kuo Zhan, Pei-Lin Xin, Zuyan Chen, Shuai Li, Francesco De Angelis, Jian-An Huang","doi":"10.1021/acs.nanolett.5c01177","DOIUrl":null,"url":null,"abstract":"Discriminating low-abundance hydroxylation is a crucial and unmet need for early disease diagnostics and therapeutic development due to the small hydroxyl group with 17.01 Da. While single-molecule surface-enhanced Raman spectroscopy (SERS) sensors can detect hydroxylation, subsequent data analysis suffers from signal fluctuations and strong interference from citrates. Here, we used our plasmonic particle-in-pore sensor, occurrence frequency histogram of the single-molecule SERS spectra, and a one-dimensional convolutional neural network (1D-CNN) model to achieve single-molecule discrimination of hydroxylation. The histogram extracted spectral features of the whole data set to overcome the signal fluctuations and helped the citrate-replaced particle-in-pore sensor to generate clean signals of the hydroxylation for model training. As a result, the discrimination of single-molecule SERS signals of proline and hydroxyproline was successful by the 1D-CNN model with 96.6% accuracy for the first time. The histogram further validated that the features extracted by the 1D-CNN model corresponded to hydroxylation-induced spectral changes.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"26 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Molecule SERS Discrimination of Proline from Hydroxyproline Assisted by a Deep Learning Model\",\"authors\":\"Yingqi Zhao, Kuo Zhan, Pei-Lin Xin, Zuyan Chen, Shuai Li, Francesco De Angelis, Jian-An Huang\",\"doi\":\"10.1021/acs.nanolett.5c01177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminating low-abundance hydroxylation is a crucial and unmet need for early disease diagnostics and therapeutic development due to the small hydroxyl group with 17.01 Da. While single-molecule surface-enhanced Raman spectroscopy (SERS) sensors can detect hydroxylation, subsequent data analysis suffers from signal fluctuations and strong interference from citrates. Here, we used our plasmonic particle-in-pore sensor, occurrence frequency histogram of the single-molecule SERS spectra, and a one-dimensional convolutional neural network (1D-CNN) model to achieve single-molecule discrimination of hydroxylation. The histogram extracted spectral features of the whole data set to overcome the signal fluctuations and helped the citrate-replaced particle-in-pore sensor to generate clean signals of the hydroxylation for model training. As a result, the discrimination of single-molecule SERS signals of proline and hydroxyproline was successful by the 1D-CNN model with 96.6% accuracy for the first time. The histogram further validated that the features extracted by the 1D-CNN model corresponded to hydroxylation-induced spectral changes.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01177\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01177","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-Molecule SERS Discrimination of Proline from Hydroxyproline Assisted by a Deep Learning Model
Discriminating low-abundance hydroxylation is a crucial and unmet need for early disease diagnostics and therapeutic development due to the small hydroxyl group with 17.01 Da. While single-molecule surface-enhanced Raman spectroscopy (SERS) sensors can detect hydroxylation, subsequent data analysis suffers from signal fluctuations and strong interference from citrates. Here, we used our plasmonic particle-in-pore sensor, occurrence frequency histogram of the single-molecule SERS spectra, and a one-dimensional convolutional neural network (1D-CNN) model to achieve single-molecule discrimination of hydroxylation. The histogram extracted spectral features of the whole data set to overcome the signal fluctuations and helped the citrate-replaced particle-in-pore sensor to generate clean signals of the hydroxylation for model training. As a result, the discrimination of single-molecule SERS signals of proline and hydroxyproline was successful by the 1D-CNN model with 96.6% accuracy for the first time. The histogram further validated that the features extracted by the 1D-CNN model corresponded to hydroxylation-induced spectral changes.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.