Mario Castro, David Gálvez-Poblete, Sebastián Castillo-Sepúlveda, Vagson L. Carvalho-Santos, Alvaro S. Nunez, Sebastian Allende
{"title":"薄磁条中边缘态的双分子","authors":"Mario Castro, David Gálvez-Poblete, Sebastián Castillo-Sepúlveda, Vagson L. Carvalho-Santos, Alvaro S. Nunez, Sebastian Allende","doi":"10.1021/acs.nanolett.4c06167","DOIUrl":null,"url":null,"abstract":"Magnetic bimerons offer a compelling alternative to skyrmions in next-generation spintronic devices. These topologically equivalent structures arise in chiral magnetic systems with in-plane magnetization driven by anisotropies or external magnetic fields. However, their use in current-driven systems is hindered by the bimeron Hall effect, which causes transverse motion and edge annihilation. Addressing these limitations, we uncover a novel mechanism for stabilizing bimeron propagation under current-driven conditions. We demonstrate that bimerons can propagate along thin ferromagnetic strips without annihilation when the easy-axis anisotropy and electric current are orthogonal. Our findings show a 6-fold velocity increase near strip edges due to boundary interactions. Furthermore, bimerons remain stable in curved geometries, allowing robust propagation in complex racetracks. This behavior also extends to bimeron chains, which propagate in parallel, forming stable and efficient configurations for information transport. These findings open new pathways toward practical and efficient bimeron-based racetrack memory technologies.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"108 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimerons as Edge States in Thin Magnetic Strips\",\"authors\":\"Mario Castro, David Gálvez-Poblete, Sebastián Castillo-Sepúlveda, Vagson L. Carvalho-Santos, Alvaro S. Nunez, Sebastian Allende\",\"doi\":\"10.1021/acs.nanolett.4c06167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic bimerons offer a compelling alternative to skyrmions in next-generation spintronic devices. These topologically equivalent structures arise in chiral magnetic systems with in-plane magnetization driven by anisotropies or external magnetic fields. However, their use in current-driven systems is hindered by the bimeron Hall effect, which causes transverse motion and edge annihilation. Addressing these limitations, we uncover a novel mechanism for stabilizing bimeron propagation under current-driven conditions. We demonstrate that bimerons can propagate along thin ferromagnetic strips without annihilation when the easy-axis anisotropy and electric current are orthogonal. Our findings show a 6-fold velocity increase near strip edges due to boundary interactions. Furthermore, bimerons remain stable in curved geometries, allowing robust propagation in complex racetracks. This behavior also extends to bimeron chains, which propagate in parallel, forming stable and efficient configurations for information transport. These findings open new pathways toward practical and efficient bimeron-based racetrack memory technologies.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c06167\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic bimerons offer a compelling alternative to skyrmions in next-generation spintronic devices. These topologically equivalent structures arise in chiral magnetic systems with in-plane magnetization driven by anisotropies or external magnetic fields. However, their use in current-driven systems is hindered by the bimeron Hall effect, which causes transverse motion and edge annihilation. Addressing these limitations, we uncover a novel mechanism for stabilizing bimeron propagation under current-driven conditions. We demonstrate that bimerons can propagate along thin ferromagnetic strips without annihilation when the easy-axis anisotropy and electric current are orthogonal. Our findings show a 6-fold velocity increase near strip edges due to boundary interactions. Furthermore, bimerons remain stable in curved geometries, allowing robust propagation in complex racetracks. This behavior also extends to bimeron chains, which propagate in parallel, forming stable and efficient configurations for information transport. These findings open new pathways toward practical and efficient bimeron-based racetrack memory technologies.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.