赋予低迟滞和超稳定聚合物凝胶通过定制的溶剂工程为皮肤一样的软电子

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-17 DOI:10.1002/smll.202501712
Yapeng Zheng, Tianyang Cui, Jingwen Wang, Liu Yang, Minyu Ou, Yuquan Chen, Yuan Hu, Zhou Gui, Jixin Zhu
{"title":"赋予低迟滞和超稳定聚合物凝胶通过定制的溶剂工程为皮肤一样的软电子","authors":"Yapeng Zheng,&nbsp;Tianyang Cui,&nbsp;Jingwen Wang,&nbsp;Liu Yang,&nbsp;Minyu Ou,&nbsp;Yuquan Chen,&nbsp;Yuan Hu,&nbsp;Zhou Gui,&nbsp;Jixin Zhu","doi":"10.1002/smll.202501712","DOIUrl":null,"url":null,"abstract":"<p>Low-hysteresis polymeric gels are crucial for advancing soft electronics, and wearable devices, effectively mitigating irreversible fatigue damage and extending device lifespans. However, simultaneously achieving low energy dissipation, robust elastic recovery, and high adaptability remains a critical challenge. Herein, a novel ionic eutectic solution (IES)-driven design strategy is introduced, optimizing intermolecular interactions and dynamic network properties to reduce energy dissipation and enhance elastic recovery. The resulting IES gels exhibit ultra-low hysteresis strain (0.46%) and a minimal energy loss coefficient (0.042), maintaining exceptional anti-fatigue durability over 20 000 cycles. These intrinsically conductive gels facilitate the fabrication of customizable sensors, achieving rapid response (94 ms), low hysteresis (96 ms), and an ultra-low detection limit of 0.1% strain. With a skin-like elasticity modulus (≈198 kPa) and robust adhesion sustained over 100 days, these gels improve wearer comfort by eliminating the discomfort associated with overly stiff or overly soft materials that mismatch with human tissue. Leveraging these properties, a real-time overload detection system based on IES gels is developed, enabling precise identification of dynamic strain and motion patterns for efficient overload warnings. This study introduces a versatile strategy for constructing high-performance polymeric gels through tailored solvent engineering, paving the way for advanced skin-like materials in soft electronics.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empowering Low-Hysteresis and Ultra-Stable Polymeric Gels Through Tailored Solvent Engineering for Skin-Like Soft Electronics\",\"authors\":\"Yapeng Zheng,&nbsp;Tianyang Cui,&nbsp;Jingwen Wang,&nbsp;Liu Yang,&nbsp;Minyu Ou,&nbsp;Yuquan Chen,&nbsp;Yuan Hu,&nbsp;Zhou Gui,&nbsp;Jixin Zhu\",\"doi\":\"10.1002/smll.202501712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-hysteresis polymeric gels are crucial for advancing soft electronics, and wearable devices, effectively mitigating irreversible fatigue damage and extending device lifespans. However, simultaneously achieving low energy dissipation, robust elastic recovery, and high adaptability remains a critical challenge. Herein, a novel ionic eutectic solution (IES)-driven design strategy is introduced, optimizing intermolecular interactions and dynamic network properties to reduce energy dissipation and enhance elastic recovery. The resulting IES gels exhibit ultra-low hysteresis strain (0.46%) and a minimal energy loss coefficient (0.042), maintaining exceptional anti-fatigue durability over 20 000 cycles. These intrinsically conductive gels facilitate the fabrication of customizable sensors, achieving rapid response (94 ms), low hysteresis (96 ms), and an ultra-low detection limit of 0.1% strain. With a skin-like elasticity modulus (≈198 kPa) and robust adhesion sustained over 100 days, these gels improve wearer comfort by eliminating the discomfort associated with overly stiff or overly soft materials that mismatch with human tissue. Leveraging these properties, a real-time overload detection system based on IES gels is developed, enabling precise identification of dynamic strain and motion patterns for efficient overload warnings. This study introduces a versatile strategy for constructing high-performance polymeric gels through tailored solvent engineering, paving the way for advanced skin-like materials in soft electronics.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 22\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501712\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501712","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

低迟滞聚合物凝胶对于推进软电子产品和可穿戴设备至关重要,可以有效减轻不可逆的疲劳损伤,延长设备寿命。然而,同时实现低能量耗散、强弹性恢复和高适应性仍然是一个关键的挑战。本文提出了一种新的离子共晶溶液驱动设计策略,优化分子间相互作用和动态网络特性,以减少能量耗散和提高弹性恢复。得到的IES凝胶具有超低的迟滞应变(0.46%)和最小的能量损失系数(0.042),在20,000次循环中保持出色的抗疲劳耐久性。这些本质导电凝胶有助于定制传感器的制造,实现快速响应(94 ms),低滞后(96 ms),以及0.1%应变的超低检测极限。这些凝胶具有类似皮肤的弹性模量(≈198 kPa)和持续100天的强大附着力,通过消除与人体组织不匹配的过硬或过软材料带来的不适,提高了佩戴者的舒适度。利用这些特性,开发了基于IES凝胶的实时过载检测系统,能够精确识别动态应变和运动模式,从而实现有效的过载预警。本研究介绍了一种通过定制溶剂工程构建高性能聚合物凝胶的通用策略,为软电子领域先进的类皮肤材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Empowering Low-Hysteresis and Ultra-Stable Polymeric Gels Through Tailored Solvent Engineering for Skin-Like Soft Electronics

Empowering Low-Hysteresis and Ultra-Stable Polymeric Gels Through Tailored Solvent Engineering for Skin-Like Soft Electronics

Low-hysteresis polymeric gels are crucial for advancing soft electronics, and wearable devices, effectively mitigating irreversible fatigue damage and extending device lifespans. However, simultaneously achieving low energy dissipation, robust elastic recovery, and high adaptability remains a critical challenge. Herein, a novel ionic eutectic solution (IES)-driven design strategy is introduced, optimizing intermolecular interactions and dynamic network properties to reduce energy dissipation and enhance elastic recovery. The resulting IES gels exhibit ultra-low hysteresis strain (0.46%) and a minimal energy loss coefficient (0.042), maintaining exceptional anti-fatigue durability over 20 000 cycles. These intrinsically conductive gels facilitate the fabrication of customizable sensors, achieving rapid response (94 ms), low hysteresis (96 ms), and an ultra-low detection limit of 0.1% strain. With a skin-like elasticity modulus (≈198 kPa) and robust adhesion sustained over 100 days, these gels improve wearer comfort by eliminating the discomfort associated with overly stiff or overly soft materials that mismatch with human tissue. Leveraging these properties, a real-time overload detection system based on IES gels is developed, enabling precise identification of dynamic strain and motion patterns for efficient overload warnings. This study introduces a versatile strategy for constructing high-performance polymeric gels through tailored solvent engineering, paving the way for advanced skin-like materials in soft electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信