施用生物有机肥通过调节根瘤微生物群改善黄瓜生长、抗病性和土壤肥力

IF 3.9 2区 农林科学 Q1 AGRONOMY
Junyan Yang, Xin Liu, Xiangmin Rong, Pan Jiang, Yixiang Xia, Guixian Xie, Gongwen Luo, Xiaoyuan Yan
{"title":"施用生物有机肥通过调节根瘤微生物群改善黄瓜生长、抗病性和土壤肥力","authors":"Junyan Yang, Xin Liu, Xiangmin Rong, Pan Jiang, Yixiang Xia, Guixian Xie, Gongwen Luo, Xiaoyuan Yan","doi":"10.1007/s11104-025-07460-0","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Continuous cropping and improper fertilization have led to frequent soil-borne diseases, which have seriously affected the yield of vegetables such as cucumbers, posing a major challenge to sustainable agricultural production. Although numerous studies have demonstrated the beneficial role of soil microorganisms in plant growth and health maintenance, their responses to bio-organic fertilizer applications remain unexplored.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study analyzed the effects of organic and bio-organic fertilizers on rhizosphere and non-rhizosphere microbiomes and their associations with cucumber growth, health, and soil fertility through field experiments.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results indicated that bio-organic fertilizer treatments (BM1 and BM4) enhanced cucumber dry biomass by 20.39% compared with chemical fertilizer (CF) and organic fertilizer (M1 and M4) treatments. Additionally, both BM1 and BM4 reduced disease severity by 20.08% and improved soil fertility, including soil organic matter and total nitrogen content, while mitigating soil acidification. Furthermore, BM1 and BM4 significantly increased the α-diversity of rhizosphere microbiomes compared with CF. Bio-organic fertilizers enriched the potentially beneficial microbiota, such as <i>Bacillus</i>, <i>Flavobacterium</i>, and <i>Pseudomonas</i>, while reducing pathogens, including <i>Fusarium</i> and <i>Lectera</i>. Network analysis indicated higher complexity and stability of rhizosphere microbial networks in BM1 and BM4 than those in CF or M. Analyses revealed that the beneficial rhizosphere taxa, pathogens, and microbial network characteristics strongly predicted plant growth, disease severity, and soil fertility indicators.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Above all, bio-organic fertilizers can enhance vegetable production performance by regulating the rhizosphere microbiome, which provides a foundation for screening biocontrol strains to improve productivity.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"6 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-organic fertilizer application improves cucumber growth, disease resistance, and soil fertility by regulating rhizosphere microbiomes\",\"authors\":\"Junyan Yang, Xin Liu, Xiangmin Rong, Pan Jiang, Yixiang Xia, Guixian Xie, Gongwen Luo, Xiaoyuan Yan\",\"doi\":\"10.1007/s11104-025-07460-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and aims</h3><p>Continuous cropping and improper fertilization have led to frequent soil-borne diseases, which have seriously affected the yield of vegetables such as cucumbers, posing a major challenge to sustainable agricultural production. Although numerous studies have demonstrated the beneficial role of soil microorganisms in plant growth and health maintenance, their responses to bio-organic fertilizer applications remain unexplored.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>This study analyzed the effects of organic and bio-organic fertilizers on rhizosphere and non-rhizosphere microbiomes and their associations with cucumber growth, health, and soil fertility through field experiments.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The results indicated that bio-organic fertilizer treatments (BM1 and BM4) enhanced cucumber dry biomass by 20.39% compared with chemical fertilizer (CF) and organic fertilizer (M1 and M4) treatments. Additionally, both BM1 and BM4 reduced disease severity by 20.08% and improved soil fertility, including soil organic matter and total nitrogen content, while mitigating soil acidification. Furthermore, BM1 and BM4 significantly increased the α-diversity of rhizosphere microbiomes compared with CF. Bio-organic fertilizers enriched the potentially beneficial microbiota, such as <i>Bacillus</i>, <i>Flavobacterium</i>, and <i>Pseudomonas</i>, while reducing pathogens, including <i>Fusarium</i> and <i>Lectera</i>. Network analysis indicated higher complexity and stability of rhizosphere microbial networks in BM1 and BM4 than those in CF or M. Analyses revealed that the beneficial rhizosphere taxa, pathogens, and microbial network characteristics strongly predicted plant growth, disease severity, and soil fertility indicators.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>Above all, bio-organic fertilizers can enhance vegetable production performance by regulating the rhizosphere microbiome, which provides a foundation for screening biocontrol strains to improve productivity.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-025-07460-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07460-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的连作和施肥不当导致土壤病害频发,严重影响黄瓜等蔬菜的产量,对农业可持续生产构成重大挑战。尽管大量研究表明土壤微生物在植物生长和健康维持中的有益作用,但它们对生物有机肥施用的反应仍未被探索。方法通过田间试验,分析有机肥和生物有机肥对黄瓜根际和非根际微生物群的影响及其与黄瓜生长、健康和土壤肥力的关系。结果结果表明,生物有机肥(BM1和BM4)处理比化肥(CF)和有机肥(M1和M4)处理能提高黄瓜干生物量20.39%。此外,BM1和BM4均降低了20.08%的病害严重程度,提高了土壤肥力,包括土壤有机质和全氮含量,同时减轻了土壤酸化。与有机肥相比,BM1和BM4显著提高了根际微生物组α-多样性。生物有机肥可丰富芽孢杆菌、黄杆菌和假单胞菌等潜在有益菌群,减少镰刀菌和Lectera等致病菌。网络分析表明,BM1和BM4的根际微生物网络的复杂性和稳定性高于CF和m。分析表明,有益的根际分类群、病原体和微生物网络特征对植物生长、疾病严重程度和土壤肥力指标具有很强的预测作用。结论综上所述,生物有机肥可通过调节根际微生物群来提高蔬菜生产性能,为筛选生物防治菌株提高产量提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-organic fertilizer application improves cucumber growth, disease resistance, and soil fertility by regulating rhizosphere microbiomes

Background and aims

Continuous cropping and improper fertilization have led to frequent soil-borne diseases, which have seriously affected the yield of vegetables such as cucumbers, posing a major challenge to sustainable agricultural production. Although numerous studies have demonstrated the beneficial role of soil microorganisms in plant growth and health maintenance, their responses to bio-organic fertilizer applications remain unexplored.

Methods

This study analyzed the effects of organic and bio-organic fertilizers on rhizosphere and non-rhizosphere microbiomes and their associations with cucumber growth, health, and soil fertility through field experiments.

Results

The results indicated that bio-organic fertilizer treatments (BM1 and BM4) enhanced cucumber dry biomass by 20.39% compared with chemical fertilizer (CF) and organic fertilizer (M1 and M4) treatments. Additionally, both BM1 and BM4 reduced disease severity by 20.08% and improved soil fertility, including soil organic matter and total nitrogen content, while mitigating soil acidification. Furthermore, BM1 and BM4 significantly increased the α-diversity of rhizosphere microbiomes compared with CF. Bio-organic fertilizers enriched the potentially beneficial microbiota, such as Bacillus, Flavobacterium, and Pseudomonas, while reducing pathogens, including Fusarium and Lectera. Network analysis indicated higher complexity and stability of rhizosphere microbial networks in BM1 and BM4 than those in CF or M. Analyses revealed that the beneficial rhizosphere taxa, pathogens, and microbial network characteristics strongly predicted plant growth, disease severity, and soil fertility indicators.

Conclusions

Above all, bio-organic fertilizers can enhance vegetable production performance by regulating the rhizosphere microbiome, which provides a foundation for screening biocontrol strains to improve productivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信