基于机器学习的激光粉末床熔合低合金钛强延性平衡设计

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaohang Zhang, Xing Ran, Zhe Wang, Wei Xu, Xiangyu Zhu, Zhiheng Du, Jiazhen Zhang, Runguang Li, Yageng Li, Xin Lu
{"title":"基于机器学习的激光粉末床熔合低合金钛强延性平衡设计","authors":"Xiaohang Zhang, Xing Ran, Zhe Wang, Wei Xu, Xiangyu Zhu, Zhiheng Du, Jiazhen Zhang, Runguang Li, Yageng Li, Xin Lu","doi":"10.1016/j.jmst.2025.03.034","DOIUrl":null,"url":null,"abstract":"With the rising demand for low-cost, recyclable, and high-performance materials, there are increasingly stringent requirements for low-alloyed titanium (Ti) components with excellent mechanical properties. In this study, assisted by a machine-learning-based design strategy, we fabricated a laser powder bed fusion low-alloyed high-performance Ti-O alloy. Ultimate tensile strength of 1005.9 MPa and an elongation of 20.5% were achieved after three iterations of active learning. Improved mechanical property is attributed to the increased content of solid-soluted O, which reduces grain size and enhances &lt;<em>c</em>+<em>a</em>&gt; dislocation activities for a more pronounced dislocation strengthening effect. This research provides a robust framework for designing high-performance titanium alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"6 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing laser powder bed fusion low-alloyed titanium with superior strength-ductility trade-off via machine learning\",\"authors\":\"Xiaohang Zhang, Xing Ran, Zhe Wang, Wei Xu, Xiangyu Zhu, Zhiheng Du, Jiazhen Zhang, Runguang Li, Yageng Li, Xin Lu\",\"doi\":\"10.1016/j.jmst.2025.03.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rising demand for low-cost, recyclable, and high-performance materials, there are increasingly stringent requirements for low-alloyed titanium (Ti) components with excellent mechanical properties. In this study, assisted by a machine-learning-based design strategy, we fabricated a laser powder bed fusion low-alloyed high-performance Ti-O alloy. Ultimate tensile strength of 1005.9 MPa and an elongation of 20.5% were achieved after three iterations of active learning. Improved mechanical property is attributed to the increased content of solid-soluted O, which reduces grain size and enhances &lt;<em>c</em>+<em>a</em>&gt; dislocation activities for a more pronounced dislocation strengthening effect. This research provides a robust framework for designing high-performance titanium alloys.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.03.034\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.03.034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对低成本、可回收、高性能材料需求的不断提高,对具有优异力学性能的低合金钛(Ti)部件的要求也越来越严格。在这项研究中,借助基于机器学习的设计策略,我们制造了一种激光粉末床熔合低合金高性能Ti-O合金。经过3次主动学习,拉伸强度达到1005.9 MPa,延伸率达到20.5%。固溶O含量的增加减小了晶粒尺寸,提高了<;c+a>;位错活动对位错强化作用更为明显。该研究为高性能钛合金的设计提供了坚实的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing laser powder bed fusion low-alloyed titanium with superior strength-ductility trade-off via machine learning

Designing laser powder bed fusion low-alloyed titanium with superior strength-ductility trade-off via machine learning
With the rising demand for low-cost, recyclable, and high-performance materials, there are increasingly stringent requirements for low-alloyed titanium (Ti) components with excellent mechanical properties. In this study, assisted by a machine-learning-based design strategy, we fabricated a laser powder bed fusion low-alloyed high-performance Ti-O alloy. Ultimate tensile strength of 1005.9 MPa and an elongation of 20.5% were achieved after three iterations of active learning. Improved mechanical property is attributed to the increased content of solid-soluted O, which reduces grain size and enhances <c+a> dislocation activities for a more pronounced dislocation strengthening effect. This research provides a robust framework for designing high-performance titanium alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信