嫦娥五号月球土壤中的多环芳烃

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guangcai Zhong, Xin Yi, Shutao Gao, Shizhen Zhao, Yangzhi Mo, Lele Tian, Buqing Xu, Fu Wang, Yuhong Liao, Tengfei Li, Liangliang Wu, Yunpeng Wang, Yingjun Chen, Yue Xu, Sanyuan Zhu, Linbo Yu, Jun Li, Ping’an Peng, Gan Zhang
{"title":"嫦娥五号月球土壤中的多环芳烃","authors":"Guangcai Zhong, Xin Yi, Shutao Gao, Shizhen Zhao, Yangzhi Mo, Lele Tian, Buqing Xu, Fu Wang, Yuhong Liao, Tengfei Li, Liangliang Wu, Yunpeng Wang, Yingjun Chen, Yue Xu, Sanyuan Zhu, Linbo Yu, Jun Li, Ping’an Peng, Gan Zhang","doi":"10.1038/s41467-025-58865-5","DOIUrl":null,"url":null,"abstract":"<p>Polycyclic aromatics are ubiquitous in the interstellar medium and meteorites, yet the search for lunar polycyclic aromatics remains a significant challenge. Here, we analyze Chang’E-5 lunar soil samples, revealing polycyclic aromatic concentrations of 5.0–9.2 µg/g (average: 7.4 ± 1.4 µg/g). Their aromatic structures are highly condensed, comparable to ~4 nm graphene sheets, and distinct from terrestrial analogs, such as wood char, soot and kerogen. While meteorite impacts are the most likely sources, the stable carbon isotope composition of polycyclic aromatics in Chang’E-5 lunar soil (δ<sup>13</sup>C: −5.0 ± 0.6‰ to +3.6 ± 1.3‰) is more enriched in <sup>13</sup>C compared to that in meteorites. This enrichment suggests a de novo formation mechanism during meteorite impacts, involving the conversion of non-aromatic organic matter—which is more enriched in δ<sup>13</sup>C—into polycyclic aromatics. This process may play a significant role in carbon accretion in lunar regolith, as the resulting polycyclic aromatics are more stable and resistant to degradation compared to smaller organic molecules (e.g., amino acids), which are largely destroyed during impact events.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"3 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polycyclic aromatics in the Chang’E 5 lunar soils\",\"authors\":\"Guangcai Zhong, Xin Yi, Shutao Gao, Shizhen Zhao, Yangzhi Mo, Lele Tian, Buqing Xu, Fu Wang, Yuhong Liao, Tengfei Li, Liangliang Wu, Yunpeng Wang, Yingjun Chen, Yue Xu, Sanyuan Zhu, Linbo Yu, Jun Li, Ping’an Peng, Gan Zhang\",\"doi\":\"10.1038/s41467-025-58865-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polycyclic aromatics are ubiquitous in the interstellar medium and meteorites, yet the search for lunar polycyclic aromatics remains a significant challenge. Here, we analyze Chang’E-5 lunar soil samples, revealing polycyclic aromatic concentrations of 5.0–9.2 µg/g (average: 7.4 ± 1.4 µg/g). Their aromatic structures are highly condensed, comparable to ~4 nm graphene sheets, and distinct from terrestrial analogs, such as wood char, soot and kerogen. While meteorite impacts are the most likely sources, the stable carbon isotope composition of polycyclic aromatics in Chang’E-5 lunar soil (δ<sup>13</sup>C: −5.0 ± 0.6‰ to +3.6 ± 1.3‰) is more enriched in <sup>13</sup>C compared to that in meteorites. This enrichment suggests a de novo formation mechanism during meteorite impacts, involving the conversion of non-aromatic organic matter—which is more enriched in δ<sup>13</sup>C—into polycyclic aromatics. This process may play a significant role in carbon accretion in lunar regolith, as the resulting polycyclic aromatics are more stable and resistant to degradation compared to smaller organic molecules (e.g., amino acids), which are largely destroyed during impact events.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58865-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58865-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多环芳烃在星际介质和陨石中无处不在,但寻找月球多环芳烃仍是一项重大挑战。在这里,我们分析了嫦娥五号月球土壤样本,发现多环芳烃浓度为 5.0-9.2 µg/g(平均:7.4 ± 1.4 µg/g)。它们的芳香结构高度凝结,可与 ~4 纳米的石墨烯薄片相媲美,并与木炭、煤烟和角质等陆地类似物截然不同。虽然陨石撞击是最可能的来源,但嫦娥五号月球土壤中多环芳烃的稳定碳同位素组成(δ13C:-5.0 ± 0.6‰至 +3.6 ± 1.3‰)与陨石中的相比,13C更为富集。这种富集表明了陨石撞击过程中的一种新形成机制,涉及非芳香族有机物--其δ13C富集程度更高--向多环芳香族的转化。这一过程可能在月球沉积物的碳增殖过程中发挥重要作用,因为由此产生的多环芳烃与较小的有机分子(如氨基酸)相比更稳定、更耐降解,而较小的有机分子在撞击事件中大部分被破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polycyclic aromatics in the Chang’E 5 lunar soils

Polycyclic aromatics in the Chang’E 5 lunar soils

Polycyclic aromatics are ubiquitous in the interstellar medium and meteorites, yet the search for lunar polycyclic aromatics remains a significant challenge. Here, we analyze Chang’E-5 lunar soil samples, revealing polycyclic aromatic concentrations of 5.0–9.2 µg/g (average: 7.4 ± 1.4 µg/g). Their aromatic structures are highly condensed, comparable to ~4 nm graphene sheets, and distinct from terrestrial analogs, such as wood char, soot and kerogen. While meteorite impacts are the most likely sources, the stable carbon isotope composition of polycyclic aromatics in Chang’E-5 lunar soil (δ13C: −5.0 ± 0.6‰ to +3.6 ± 1.3‰) is more enriched in 13C compared to that in meteorites. This enrichment suggests a de novo formation mechanism during meteorite impacts, involving the conversion of non-aromatic organic matter—which is more enriched in δ13C—into polycyclic aromatics. This process may play a significant role in carbon accretion in lunar regolith, as the resulting polycyclic aromatics are more stable and resistant to degradation compared to smaller organic molecules (e.g., amino acids), which are largely destroyed during impact events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信