先天免疫的发病模式:秀丽隐杆线虫的见解

IF 67.7 1区 医学 Q1 IMMUNOLOGY
Samantha Tse-Kang, Khursheed A. Wani, Read Pukkila-Worley
{"title":"先天免疫的发病模式:秀丽隐杆线虫的见解","authors":"Samantha Tse-Kang, Khursheed A. Wani, Read Pukkila-Worley","doi":"10.1038/s41577-025-01167-0","DOIUrl":null,"url":null,"abstract":"<p>The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as <i>Caenorhabditis elegans</i>, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how <i>C. elegans</i> surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using <i>C. elegans</i> as an experimental platform to study host–pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.</p>","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":"60 1","pages":""},"PeriodicalIF":67.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of pathogenesis in innate immunity: insights from C. elegans\",\"authors\":\"Samantha Tse-Kang, Khursheed A. Wani, Read Pukkila-Worley\",\"doi\":\"10.1038/s41577-025-01167-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as <i>Caenorhabditis elegans</i>, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how <i>C. elegans</i> surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using <i>C. elegans</i> as an experimental platform to study host–pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.</p>\",\"PeriodicalId\":19049,\"journal\":{\"name\":\"Nature Reviews Immunology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":67.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41577-025-01167-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41577-025-01167-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

屏障组织中的细胞可以区分病原菌和共生菌,只有在感染的情况下才能靶向炎症反应。因此,这些细胞必须能够特异性地识别病原体感染,而不仅仅是传染性生物体的存在,因为许多无害细菌表达在其他情况下激活先天免疫的配体。然而,揭示这种特异性背后的机制是具有挑战性的。自由生活的线虫,如秀丽隐杆线虫,也面临着类似的困境,因为它们生活在微生物丰富的栖息地,并以细菌作为营养来源。线虫在进化过程中失去了典型的模式识别机制,取而代之的是进化出识别宿主体内特定配体或症状的机制,这些机制表明感染了感染性微生物。在这里,我们回顾秀丽隐杆线虫如何调查这些发病模式来激活先天免疫防御。总的来说,这项工作表明,使用秀丽隐杆线虫作为实验平台来研究屏障表面的宿主-病原体相互作用,揭示了生命之树动物分支中先天免疫感知的原始和根本重要原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Patterns of pathogenesis in innate immunity: insights from C. elegans

Patterns of pathogenesis in innate immunity: insights from C. elegans

The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host–pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Immunology
Nature Reviews Immunology 医学-免疫学
CiteScore
93.40
自引率
0.40%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Immunology is a journal that provides comprehensive coverage of all areas of immunology, including fundamental mechanisms and applied aspects. It has two international standard serial numbers (ISSN): 1474-1733 for print and 1474-1741 for online. In addition to review articles, the journal also features recent developments and new primary papers in the field, as well as reflections on influential people, papers, and events in the development of immunology. The subjects covered by Nature Reviews Immunology include allergy and asthma, autoimmunity, antigen processing and presentation, apoptosis and cell death, chemokines and chemokine receptors, cytokines and cytokine receptors, development and function of cells of the immune system, haematopoiesis, infection and immunity, immunotherapy, innate immunity, mucosal immunology and the microbiota, regulation of the immune response, signalling in the immune system, transplantation, tumour immunology and immunotherapy, and vaccine development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信