高效稳定的钙钛矿太阳能电池中刘易斯碱的按需形成

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sheng Fu, Nannan Sun, Hao Chen, Cheng Liu, Xiaoming Wang, You Li, Abasi Abudulimu, Yuanze Xu, Shipathi Ramakrishnan, Chongwen Li, Yi Yang, Haoyue Wan, Zixu Huang, Yeming Xian, Yifan Yin, Tingting Zhu, Haoran Chen, Amirhossein Rahimi, Muhammad Mohsin Saeed, Yugang Zhang, Qiuming Yu, David S. Ginger, Randy J. Ellingson, Bin Chen, Zhaoning Song, Mercouri G. Kanatzidis, Edward H. Sargent, Yanfa Yan
{"title":"高效稳定的钙钛矿太阳能电池中刘易斯碱的按需形成","authors":"Sheng Fu, Nannan Sun, Hao Chen, Cheng Liu, Xiaoming Wang, You Li, Abasi Abudulimu, Yuanze Xu, Shipathi Ramakrishnan, Chongwen Li, Yi Yang, Haoyue Wan, Zixu Huang, Yeming Xian, Yifan Yin, Tingting Zhu, Haoran Chen, Amirhossein Rahimi, Muhammad Mohsin Saeed, Yugang Zhang, Qiuming Yu, David S. Ginger, Randy J. Ellingson, Bin Chen, Zhaoning Song, Mercouri G. Kanatzidis, Edward H. Sargent, Yanfa Yan","doi":"10.1038/s41565-025-01900-9","DOIUrl":null,"url":null,"abstract":"<p>In the fabrication of FAPbI<sub>3</sub>-based perovskite solar cells, Lewis bases play a crucial role in facilitating the formation of the desired photovoltaic α-phase. However, an inherent contradiction exists in their role: they must strongly bind to stabilize the intermediate δ-phase, yet weakly bind for rapid removal to enable phase transition and grain growth. To resolve this conflict, we introduced an on-demand Lewis base molecule formation strategy. This approach utilized Lewis-acid-containing organic salts as synthesis additives, which deprotonated to generate Lewis bases precisely when needed and could be reprotonated back to salts for rapid removal once their role is fulfilled. This method promoted the optimal crystallization of α-phase FAPbI<sub>3</sub> perovskite films, ensuring the uniform vertical distribution of A-site cations, larger grain sizes and fewer voids at buried interfaces. Perovskite solar cells incorporating semicarbazide hydrochloride achieved an efficiency of 26.1%, with a National Renewable Energy Laboratory-certified quasi-steady-state efficiency of 25.33%. These cells retained 96% of their initial efficiency after 1,000 h of operation at 85 °C under maximum power point tracking. Additionally, mini-modules with an aperture area of 11.52 cm<sup>2</sup> reached an efficiency of 21.47%. This strategy is broadly applicable to all Lewis-acid-containing organic salts with low acid dissociation constants and offers a universal approach to enhance the performance of perovskite solar cells and modules.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"4 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-demand formation of Lewis bases for efficient and stable perovskite solar cells\",\"authors\":\"Sheng Fu, Nannan Sun, Hao Chen, Cheng Liu, Xiaoming Wang, You Li, Abasi Abudulimu, Yuanze Xu, Shipathi Ramakrishnan, Chongwen Li, Yi Yang, Haoyue Wan, Zixu Huang, Yeming Xian, Yifan Yin, Tingting Zhu, Haoran Chen, Amirhossein Rahimi, Muhammad Mohsin Saeed, Yugang Zhang, Qiuming Yu, David S. Ginger, Randy J. Ellingson, Bin Chen, Zhaoning Song, Mercouri G. Kanatzidis, Edward H. Sargent, Yanfa Yan\",\"doi\":\"10.1038/s41565-025-01900-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the fabrication of FAPbI<sub>3</sub>-based perovskite solar cells, Lewis bases play a crucial role in facilitating the formation of the desired photovoltaic α-phase. However, an inherent contradiction exists in their role: they must strongly bind to stabilize the intermediate δ-phase, yet weakly bind for rapid removal to enable phase transition and grain growth. To resolve this conflict, we introduced an on-demand Lewis base molecule formation strategy. This approach utilized Lewis-acid-containing organic salts as synthesis additives, which deprotonated to generate Lewis bases precisely when needed and could be reprotonated back to salts for rapid removal once their role is fulfilled. This method promoted the optimal crystallization of α-phase FAPbI<sub>3</sub> perovskite films, ensuring the uniform vertical distribution of A-site cations, larger grain sizes and fewer voids at buried interfaces. Perovskite solar cells incorporating semicarbazide hydrochloride achieved an efficiency of 26.1%, with a National Renewable Energy Laboratory-certified quasi-steady-state efficiency of 25.33%. These cells retained 96% of their initial efficiency after 1,000 h of operation at 85 °C under maximum power point tracking. Additionally, mini-modules with an aperture area of 11.52 cm<sup>2</sup> reached an efficiency of 21.47%. This strategy is broadly applicable to all Lewis-acid-containing organic salts with low acid dissociation constants and offers a universal approach to enhance the performance of perovskite solar cells and modules.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01900-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01900-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在fapbi3基钙钛矿太阳能电池的制备中,Lewis碱在促进所需的光伏α-相的形成中起着至关重要的作用。然而,它们的作用存在一个固有的矛盾:它们必须强结合以稳定中间δ相,而弱结合以快速去除以实现相变和晶粒生长。为了解决这一冲突,我们引入了一种按需路易斯碱分子形成策略。该方法利用含路易斯酸的有机盐作为合成添加剂,在需要时精确地去质子生成路易斯碱,一旦完成其作用,可以重新还原回盐以快速去除。该方法促进了α-相FAPbI3钙钛矿膜的最佳结晶,保证了a位阳离子垂直分布均匀,晶粒尺寸更大,埋藏界面空隙更少。含有氨基脲的钙钛矿太阳能电池的效率为26.1%,国家可再生能源实验室认证的准稳态效率为25.33%。在最大功率点跟踪下,在85°C下运行1000小时后,这些电池保持了96%的初始效率。此外,孔径面积为11.52 cm2的微型模块效率达到21.47%。该策略广泛适用于所有具有低酸解离常数的含lewis酸的有机盐,并为提高钙钛矿太阳能电池和组件的性能提供了一种通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On-demand formation of Lewis bases for efficient and stable perovskite solar cells

On-demand formation of Lewis bases for efficient and stable perovskite solar cells

In the fabrication of FAPbI3-based perovskite solar cells, Lewis bases play a crucial role in facilitating the formation of the desired photovoltaic α-phase. However, an inherent contradiction exists in their role: they must strongly bind to stabilize the intermediate δ-phase, yet weakly bind for rapid removal to enable phase transition and grain growth. To resolve this conflict, we introduced an on-demand Lewis base molecule formation strategy. This approach utilized Lewis-acid-containing organic salts as synthesis additives, which deprotonated to generate Lewis bases precisely when needed and could be reprotonated back to salts for rapid removal once their role is fulfilled. This method promoted the optimal crystallization of α-phase FAPbI3 perovskite films, ensuring the uniform vertical distribution of A-site cations, larger grain sizes and fewer voids at buried interfaces. Perovskite solar cells incorporating semicarbazide hydrochloride achieved an efficiency of 26.1%, with a National Renewable Energy Laboratory-certified quasi-steady-state efficiency of 25.33%. These cells retained 96% of their initial efficiency after 1,000 h of operation at 85 °C under maximum power point tracking. Additionally, mini-modules with an aperture area of 11.52 cm2 reached an efficiency of 21.47%. This strategy is broadly applicable to all Lewis-acid-containing organic salts with low acid dissociation constants and offers a universal approach to enhance the performance of perovskite solar cells and modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信