Rui Huang, Qing-Yu Cai, Farzam Nosrati, Rosario Lo Franco and Zhong-Xiao Man
{"title":"多部量子系统的稳态相干性:与热力学量的联系及其对量子热机的影响","authors":"Rui Huang, Qing-Yu Cai, Farzam Nosrati, Rosario Lo Franco and Zhong-Xiao Man","doi":"10.1088/2058-9565/adcae5","DOIUrl":null,"url":null,"abstract":"Understanding how coherence of quantum systems affects thermodynamic quantities, such as work and heat, is essential for harnessing quantumness effectively in thermal quantum technologies. Here, we study the unique contributions of quantum coherence among different subsystems of a multipartite system, specifically in non-equilibrium steady states, to work and heat currents. Our system comprises two coupled ensembles, each consisting of N particles, interacting with two baths of different temperatures, respectively. The particles in an ensemble interact with their bath either simultaneously or sequentially, leading to non-local dissipation and enabling the decomposition of work and heat currents into local and non-local components. We find that the non-local heat current, as well as both the local and non-local work currents, are linked to the system quantum coherence. We provide explicit expressions of coherence-related quantities that determine the work currents under various intrasystem interactions. Our scheme is versatile, capable of functioning as a refrigerator, an engine, and an accelerator, with its performance being highly sensitive to the configuration settings. These findings establish a connection between thermodynamic quantities and quantum coherence, supplying valuable insights for the design of quantum thermal machines.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state coherence in multipartite quantum systems: its connection with thermodynamic quantities and impact on quantum thermal machines\",\"authors\":\"Rui Huang, Qing-Yu Cai, Farzam Nosrati, Rosario Lo Franco and Zhong-Xiao Man\",\"doi\":\"10.1088/2058-9565/adcae5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how coherence of quantum systems affects thermodynamic quantities, such as work and heat, is essential for harnessing quantumness effectively in thermal quantum technologies. Here, we study the unique contributions of quantum coherence among different subsystems of a multipartite system, specifically in non-equilibrium steady states, to work and heat currents. Our system comprises two coupled ensembles, each consisting of N particles, interacting with two baths of different temperatures, respectively. The particles in an ensemble interact with their bath either simultaneously or sequentially, leading to non-local dissipation and enabling the decomposition of work and heat currents into local and non-local components. We find that the non-local heat current, as well as both the local and non-local work currents, are linked to the system quantum coherence. We provide explicit expressions of coherence-related quantities that determine the work currents under various intrasystem interactions. Our scheme is versatile, capable of functioning as a refrigerator, an engine, and an accelerator, with its performance being highly sensitive to the configuration settings. These findings establish a connection between thermodynamic quantities and quantum coherence, supplying valuable insights for the design of quantum thermal machines.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adcae5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adcae5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Steady-state coherence in multipartite quantum systems: its connection with thermodynamic quantities and impact on quantum thermal machines
Understanding how coherence of quantum systems affects thermodynamic quantities, such as work and heat, is essential for harnessing quantumness effectively in thermal quantum technologies. Here, we study the unique contributions of quantum coherence among different subsystems of a multipartite system, specifically in non-equilibrium steady states, to work and heat currents. Our system comprises two coupled ensembles, each consisting of N particles, interacting with two baths of different temperatures, respectively. The particles in an ensemble interact with their bath either simultaneously or sequentially, leading to non-local dissipation and enabling the decomposition of work and heat currents into local and non-local components. We find that the non-local heat current, as well as both the local and non-local work currents, are linked to the system quantum coherence. We provide explicit expressions of coherence-related quantities that determine the work currents under various intrasystem interactions. Our scheme is versatile, capable of functioning as a refrigerator, an engine, and an accelerator, with its performance being highly sensitive to the configuration settings. These findings establish a connection between thermodynamic quantities and quantum coherence, supplying valuable insights for the design of quantum thermal machines.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.