Jotin Gogoi, Komal Ishwar Pawar, Koushick Sivakumar, Akshay Bhatnagar, Katta Suma, Kezia J. Ann, Sambhavi Pottabathini, Shobha P. Kruparani, Rajan Sankaranarayanan
{"title":"金属离子介导的功能二分法在翻译质量控制中编码可塑性","authors":"Jotin Gogoi, Komal Ishwar Pawar, Koushick Sivakumar, Akshay Bhatnagar, Katta Suma, Kezia J. Ann, Sambhavi Pottabathini, Shobha P. Kruparani, Rajan Sankaranarayanan","doi":"10.1038/s41467-025-58787-2","DOIUrl":null,"url":null,"abstract":"<p>Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn<sup>2+</sup> binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn<sup>2+</sup> in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed’s activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metal ion mediated functional dichotomy encodes plasticity during translation quality control\",\"authors\":\"Jotin Gogoi, Komal Ishwar Pawar, Koushick Sivakumar, Akshay Bhatnagar, Katta Suma, Kezia J. Ann, Sambhavi Pottabathini, Shobha P. Kruparani, Rajan Sankaranarayanan\",\"doi\":\"10.1038/s41467-025-58787-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn<sup>2+</sup> binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn<sup>2+</sup> in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed’s activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58787-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58787-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A metal ion mediated functional dichotomy encodes plasticity during translation quality control
Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn2+ binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn2+ in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed’s activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.