Cholaphan Deeleepojananan, Shubhrangshu Pandit, Jienan Li, Dylan A. Schmidt, Delphine K. Farmer, Vicki H. Grassian
{"title":"渗透的野火烟雾在室内相关表面上的化学转化","authors":"Cholaphan Deeleepojananan, Shubhrangshu Pandit, Jienan Li, Dylan A. Schmidt, Delphine K. Farmer, Vicki H. Grassian","doi":"10.1021/acs.est.4c11771","DOIUrl":null,"url":null,"abstract":"Indoor environments are affected during wildfire events due to the infiltration of smoke. In this study, the fate of wildfire smoke, including gases and particles, on indoor surfaces was investigated through laboratory and field experiments. Fresh smoke was generated from the burning of ponderosa pine woodchips, which produced well-established wildfire and biomass burning tracers, such as levoglucosan, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), and 5-hydroxymethylfurfural. The interactions of smoke particles and gases were observed on different indoor-relevant building material surfaces, including glass (windows), rutile (paint and self-cleaning surfaces), and kaolinite (cement proxy and clay). However, the relative abundance of surface-bound species varied depending on the nature of these surfaces, suggesting that preferential adsorption of volatile species and particle deposition onto relevant surfaces play a key role in indoor chemistry and indoor air quality following smoke intrusion. Kaolinite surfaces, in particular, exhibited the formation of surface-initiated products during fresh smoke exposure. Furthermore, the formation of larger particles on a rutile surface was observed following ozone-aged smoke exposure, potentially resulting from the interaction of secondary organic aerosol formed during ozonolysis. Overall, this study demonstrates that different indoor-relevant material surfaces interact uniquely with smoke compounds, leading to distinct chemical transformations.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"60 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Transformations of Infiltrated Wildfire Smoke on Indoor-Relevant Surfaces\",\"authors\":\"Cholaphan Deeleepojananan, Shubhrangshu Pandit, Jienan Li, Dylan A. Schmidt, Delphine K. Farmer, Vicki H. Grassian\",\"doi\":\"10.1021/acs.est.4c11771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor environments are affected during wildfire events due to the infiltration of smoke. In this study, the fate of wildfire smoke, including gases and particles, on indoor surfaces was investigated through laboratory and field experiments. Fresh smoke was generated from the burning of ponderosa pine woodchips, which produced well-established wildfire and biomass burning tracers, such as levoglucosan, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), and 5-hydroxymethylfurfural. The interactions of smoke particles and gases were observed on different indoor-relevant building material surfaces, including glass (windows), rutile (paint and self-cleaning surfaces), and kaolinite (cement proxy and clay). However, the relative abundance of surface-bound species varied depending on the nature of these surfaces, suggesting that preferential adsorption of volatile species and particle deposition onto relevant surfaces play a key role in indoor chemistry and indoor air quality following smoke intrusion. Kaolinite surfaces, in particular, exhibited the formation of surface-initiated products during fresh smoke exposure. Furthermore, the formation of larger particles on a rutile surface was observed following ozone-aged smoke exposure, potentially resulting from the interaction of secondary organic aerosol formed during ozonolysis. Overall, this study demonstrates that different indoor-relevant material surfaces interact uniquely with smoke compounds, leading to distinct chemical transformations.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c11771\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11771","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Chemical Transformations of Infiltrated Wildfire Smoke on Indoor-Relevant Surfaces
Indoor environments are affected during wildfire events due to the infiltration of smoke. In this study, the fate of wildfire smoke, including gases and particles, on indoor surfaces was investigated through laboratory and field experiments. Fresh smoke was generated from the burning of ponderosa pine woodchips, which produced well-established wildfire and biomass burning tracers, such as levoglucosan, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), and 5-hydroxymethylfurfural. The interactions of smoke particles and gases were observed on different indoor-relevant building material surfaces, including glass (windows), rutile (paint and self-cleaning surfaces), and kaolinite (cement proxy and clay). However, the relative abundance of surface-bound species varied depending on the nature of these surfaces, suggesting that preferential adsorption of volatile species and particle deposition onto relevant surfaces play a key role in indoor chemistry and indoor air quality following smoke intrusion. Kaolinite surfaces, in particular, exhibited the formation of surface-initiated products during fresh smoke exposure. Furthermore, the formation of larger particles on a rutile surface was observed following ozone-aged smoke exposure, potentially resulting from the interaction of secondary organic aerosol formed during ozonolysis. Overall, this study demonstrates that different indoor-relevant material surfaces interact uniquely with smoke compounds, leading to distinct chemical transformations.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.