Elena Totter, Emilie von Einsiedel, Lisa Regazzoni, Simone Schuerle
{"title":"为以细菌为基础的药物输送铺平道路:微机器人和合成生物学中出现的生物混合微型机器人","authors":"Elena Totter, Emilie von Einsiedel, Lisa Regazzoni, Simone Schuerle","doi":"10.1016/j.addr.2025.115577","DOIUrl":null,"url":null,"abstract":"Advances in microrobotics and synthetic biology are paving the way for innovative solutions to long-standing challenges in drug delivery. Both fields have independently worked on engineering bacteria as a therapeutic system, focusing on enhancing propulsion, cargo delivery, detection, and biocompatibility. Bacteria, with their inherent adaptability and functional versatility, serve as an ideal foundation for these efforts, enabling them to navigate complex biological environments such as the human body.This review explores the convergence of microrobotics and synthetic biology, which has catalysed the development of biohybrid bacterial microrobots that integrate the strengths of both disciplines. By incorporating external control modalities – such as light, ultrasound, and magnetic fields – these hybrid systems address the limitations of purely microrobotic or biological approaches, offering new opportunities to enhance precision and efficacy in targeted therapies.However, realising the full potential of biohybrid bacterial microrobots requires overcoming critical challenges, such as ensuring compatibility between biological and synthetic components, scaling manufacturing processes, and defining regulatory pathways tailored to living therapeutics. Addressing these hurdles through joint, interdisciplinary research efforts, can unlock the transformative possibilities of these systems in modern medicine.","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"3 1","pages":""},"PeriodicalIF":15.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paving the way for bacteria-based drug delivery: biohybrid microrobots emerging from microrobotics and synthetic biology\",\"authors\":\"Elena Totter, Emilie von Einsiedel, Lisa Regazzoni, Simone Schuerle\",\"doi\":\"10.1016/j.addr.2025.115577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in microrobotics and synthetic biology are paving the way for innovative solutions to long-standing challenges in drug delivery. Both fields have independently worked on engineering bacteria as a therapeutic system, focusing on enhancing propulsion, cargo delivery, detection, and biocompatibility. Bacteria, with their inherent adaptability and functional versatility, serve as an ideal foundation for these efforts, enabling them to navigate complex biological environments such as the human body.This review explores the convergence of microrobotics and synthetic biology, which has catalysed the development of biohybrid bacterial microrobots that integrate the strengths of both disciplines. By incorporating external control modalities – such as light, ultrasound, and magnetic fields – these hybrid systems address the limitations of purely microrobotic or biological approaches, offering new opportunities to enhance precision and efficacy in targeted therapies.However, realising the full potential of biohybrid bacterial microrobots requires overcoming critical challenges, such as ensuring compatibility between biological and synthetic components, scaling manufacturing processes, and defining regulatory pathways tailored to living therapeutics. Addressing these hurdles through joint, interdisciplinary research efforts, can unlock the transformative possibilities of these systems in modern medicine.\",\"PeriodicalId\":7254,\"journal\":{\"name\":\"Advanced drug delivery reviews\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced drug delivery reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.addr.2025.115577\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.addr.2025.115577","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Paving the way for bacteria-based drug delivery: biohybrid microrobots emerging from microrobotics and synthetic biology
Advances in microrobotics and synthetic biology are paving the way for innovative solutions to long-standing challenges in drug delivery. Both fields have independently worked on engineering bacteria as a therapeutic system, focusing on enhancing propulsion, cargo delivery, detection, and biocompatibility. Bacteria, with their inherent adaptability and functional versatility, serve as an ideal foundation for these efforts, enabling them to navigate complex biological environments such as the human body.This review explores the convergence of microrobotics and synthetic biology, which has catalysed the development of biohybrid bacterial microrobots that integrate the strengths of both disciplines. By incorporating external control modalities – such as light, ultrasound, and magnetic fields – these hybrid systems address the limitations of purely microrobotic or biological approaches, offering new opportunities to enhance precision and efficacy in targeted therapies.However, realising the full potential of biohybrid bacterial microrobots requires overcoming critical challenges, such as ensuring compatibility between biological and synthetic components, scaling manufacturing processes, and defining regulatory pathways tailored to living therapeutics. Addressing these hurdles through joint, interdisciplinary research efforts, can unlock the transformative possibilities of these systems in modern medicine.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.