应用集成的大体积RNA测序和单细胞RNA测序分析鉴定脓毒症相关生物标志物的计算机研究

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qile Ye, Yuhang Dong, Jingting Liang, Jingyao Lv, Rong Tang, Shuai Zhao, Guiying Hou
{"title":"应用集成的大体积RNA测序和单细胞RNA测序分析鉴定脓毒症相关生物标志物的计算机研究","authors":"Qile Ye,&nbsp;Yuhang Dong,&nbsp;Jingting Liang,&nbsp;Jingyao Lv,&nbsp;Rong Tang,&nbsp;Shuai Zhao,&nbsp;Guiying Hou","doi":"10.1002/gch2.202400321","DOIUrl":null,"url":null,"abstract":"<p>This study aims to discover sepsis-related biomarkers via in-silico analyses. The single-cell sequencing RNA (sc-RNA) data and metabolism-related genes are obtained from public databases and previous studies, respectively. Cell subpopulations are identified and annotated, followed by performing single-sample geneset enrichment analysis (ssGSEA and identification of differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) is applied to classify specific gene modules, and the key module is subjected to immune infiltration analysis. The communication between the subclusters of monocytes is visualized. Five cell subpopulations (subcluster C1-5) containing a relatively higher percentage of monocytes are identified, with subcluster C4 having the lowest enrichment score of metabolism-related genes. Genes with a higher expression in the subclusters are enriched for antigen processing and presentation of exogenous antigen, lymphocyte differentiation, and leukocyte activation. Subcluster C5 affected other subclusters through galectin 9 (LGALS9)-CD45 and LGALS9-CD44, while other subclusters affected subcluster C5 through MIF-(CD74+C-X-C motif chemokine receptor 4 (CXCR4)) and MIF-(CD74+CD44). Six genes (F-Box Protein 4, <i>FBXO4</i>; Forkhead Box K1, <i>FOXK1</i>; MSH2 with MutS Homolog 2, <i>MSH2</i>; Nop-7-associated 2, <i>NSA2</i>; Transmembrane Protein 128, <i>TMEM128</i>; and <i>SBDS</i>) are determined as the hub genes for sepsis. The 6 hub genes are positively correlated with, among others, monocytes and NK cells, but negatively correlated with neutrophils. This study identifies accurate biomarkers for sepsis, contributing to the diagnosis and treatment of the disease.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"9 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400321","citationCount":"0","resultStr":"{\"title\":\"An In-Silico Study to Identify Relevant Biomarkers in Sepsis Applying Integrated Bulk RNA Sequencing and Single-Cell RNA Sequencing Analyses\",\"authors\":\"Qile Ye,&nbsp;Yuhang Dong,&nbsp;Jingting Liang,&nbsp;Jingyao Lv,&nbsp;Rong Tang,&nbsp;Shuai Zhao,&nbsp;Guiying Hou\",\"doi\":\"10.1002/gch2.202400321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to discover sepsis-related biomarkers via in-silico analyses. The single-cell sequencing RNA (sc-RNA) data and metabolism-related genes are obtained from public databases and previous studies, respectively. Cell subpopulations are identified and annotated, followed by performing single-sample geneset enrichment analysis (ssGSEA and identification of differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) is applied to classify specific gene modules, and the key module is subjected to immune infiltration analysis. The communication between the subclusters of monocytes is visualized. Five cell subpopulations (subcluster C1-5) containing a relatively higher percentage of monocytes are identified, with subcluster C4 having the lowest enrichment score of metabolism-related genes. Genes with a higher expression in the subclusters are enriched for antigen processing and presentation of exogenous antigen, lymphocyte differentiation, and leukocyte activation. Subcluster C5 affected other subclusters through galectin 9 (LGALS9)-CD45 and LGALS9-CD44, while other subclusters affected subcluster C5 through MIF-(CD74+C-X-C motif chemokine receptor 4 (CXCR4)) and MIF-(CD74+CD44). Six genes (F-Box Protein 4, <i>FBXO4</i>; Forkhead Box K1, <i>FOXK1</i>; MSH2 with MutS Homolog 2, <i>MSH2</i>; Nop-7-associated 2, <i>NSA2</i>; Transmembrane Protein 128, <i>TMEM128</i>; and <i>SBDS</i>) are determined as the hub genes for sepsis. The 6 hub genes are positively correlated with, among others, monocytes and NK cells, but negatively correlated with neutrophils. This study identifies accurate biomarkers for sepsis, contributing to the diagnosis and treatment of the disease.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400321\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400321","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过计算机分析发现败血症相关的生物标志物。单细胞测序RNA (sc-RNA)数据和代谢相关基因分别来自公共数据库和先前的研究。对细胞亚群进行鉴定和注释,然后进行单样本基因集富集分析(ssGSEA)和差异表达基因(DEGs)鉴定。采用加权基因共表达网络分析(Weighted gene共表达network analysis, WGCNA)对特定基因模块进行分类,对关键模块进行免疫浸润分析。可见单核细胞亚簇之间的通信。鉴定出5个细胞亚群(C1-5亚群)含有较高比例的单核细胞,其中C4亚群代谢相关基因的富集分数最低。在亚簇中表达较高的基因被富集于抗原加工和外源抗原呈递、淋巴细胞分化和白细胞活化。亚簇C5通过凝集素9 (LGALS9)- cd45和LGALS9-CD44影响其他亚簇,而其他亚簇通过MIF-(CD74+C-X-C基序趋化因子受体4 (CXCR4))和MIF-(CD74+CD44)影响亚簇C5。6个基因(F-Box蛋白4,FBXO4;叉头箱K1、FOXK1;MSH2与MutS同源物2 MSH2;Nop-7-associated 2, NSA2;跨膜蛋白128 (TMEM128);和SBDS)被确定为败血症的中心基因。这6个hub基因与单核细胞和NK细胞呈正相关,与中性粒细胞呈负相关。本研究确定了脓毒症的准确生物标志物,有助于疾病的诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An In-Silico Study to Identify Relevant Biomarkers in Sepsis Applying Integrated Bulk RNA Sequencing and Single-Cell RNA Sequencing Analyses

An In-Silico Study to Identify Relevant Biomarkers in Sepsis Applying Integrated Bulk RNA Sequencing and Single-Cell RNA Sequencing Analyses

This study aims to discover sepsis-related biomarkers via in-silico analyses. The single-cell sequencing RNA (sc-RNA) data and metabolism-related genes are obtained from public databases and previous studies, respectively. Cell subpopulations are identified and annotated, followed by performing single-sample geneset enrichment analysis (ssGSEA and identification of differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) is applied to classify specific gene modules, and the key module is subjected to immune infiltration analysis. The communication between the subclusters of monocytes is visualized. Five cell subpopulations (subcluster C1-5) containing a relatively higher percentage of monocytes are identified, with subcluster C4 having the lowest enrichment score of metabolism-related genes. Genes with a higher expression in the subclusters are enriched for antigen processing and presentation of exogenous antigen, lymphocyte differentiation, and leukocyte activation. Subcluster C5 affected other subclusters through galectin 9 (LGALS9)-CD45 and LGALS9-CD44, while other subclusters affected subcluster C5 through MIF-(CD74+C-X-C motif chemokine receptor 4 (CXCR4)) and MIF-(CD74+CD44). Six genes (F-Box Protein 4, FBXO4; Forkhead Box K1, FOXK1; MSH2 with MutS Homolog 2, MSH2; Nop-7-associated 2, NSA2; Transmembrane Protein 128, TMEM128; and SBDS) are determined as the hub genes for sepsis. The 6 hub genes are positively correlated with, among others, monocytes and NK cells, but negatively correlated with neutrophils. This study identifies accurate biomarkers for sepsis, contributing to the diagnosis and treatment of the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信