双分量Camassa-Holm系统光滑多孤子的稳定性

IF 1 2区 数学 Q1 MATHEMATICS
Zhi-Jia Wu, Shou-Fu Tian, Yue Liu, Zhong Wang
{"title":"双分量Camassa-Holm系统光滑多孤子的稳定性","authors":"Zhi-Jia Wu,&nbsp;Shou-Fu Tian,&nbsp;Yue Liu,&nbsp;Zhong Wang","doi":"10.1112/jlms.70158","DOIUrl":null,"url":null,"abstract":"<p>In this work, we study the stability of exact smooth multisolitons for the two-component Camassa–Holm system, a completely integrable model for unidirectional shallow-water waves. By analyzing the spectrum of the linearized system and using a suitable Lyapunov functional, we show that these smooth multisolitons, as nonisolated constrained minimizers, are dynamically stable under small perturbations in an appropriate Sobolev space. A key part of our analysis involves employing the recursion operator from the bi-Hamiltonian structure and introducing a new transformation to diagonalize the nondiagonal matrix form in the second variation of the Lyapunov functional. This approach is essential due to the significant differences compared to the classical Camassa–Holm equation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of smooth multisolitons for the two-component Camassa–Holm system\",\"authors\":\"Zhi-Jia Wu,&nbsp;Shou-Fu Tian,&nbsp;Yue Liu,&nbsp;Zhong Wang\",\"doi\":\"10.1112/jlms.70158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we study the stability of exact smooth multisolitons for the two-component Camassa–Holm system, a completely integrable model for unidirectional shallow-water waves. By analyzing the spectrum of the linearized system and using a suitable Lyapunov functional, we show that these smooth multisolitons, as nonisolated constrained minimizers, are dynamically stable under small perturbations in an appropriate Sobolev space. A key part of our analysis involves employing the recursion operator from the bi-Hamiltonian structure and introducing a new transformation to diagonalize the nondiagonal matrix form in the second variation of the Lyapunov functional. This approach is essential due to the significant differences compared to the classical Camassa–Holm equation.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70158\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了单向浅水波的完全可积模型——双分量Camassa-Holm系统的精确光滑多孤子的稳定性。通过分析线性化系统的谱并使用合适的Lyapunov泛函,我们证明了这些光滑多孤子作为非孤立约束极小值,在适当的Sobolev空间中的小扰动下是动态稳定的。我们的分析的关键部分包括使用双哈密顿结构的递归算子,并引入一个新的变换来对角化李亚普诺夫泛函的第二种变化中的非对角矩阵形式。由于与经典Camassa-Holm方程的显著差异,这种方法是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of smooth multisolitons for the two-component Camassa–Holm system

In this work, we study the stability of exact smooth multisolitons for the two-component Camassa–Holm system, a completely integrable model for unidirectional shallow-water waves. By analyzing the spectrum of the linearized system and using a suitable Lyapunov functional, we show that these smooth multisolitons, as nonisolated constrained minimizers, are dynamically stable under small perturbations in an appropriate Sobolev space. A key part of our analysis involves employing the recursion operator from the bi-Hamiltonian structure and introducing a new transformation to diagonalize the nondiagonal matrix form in the second variation of the Lyapunov functional. This approach is essential due to the significant differences compared to the classical Camassa–Holm equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信