{"title":"全丙烯酸水性压敏胶乳的相关配方及性能","authors":"Julie Bratasanu, Victoria Aguilar, Leila Issoufou Alfari, Mathieu Leocmach, Benoit Mahler, Eric Drockenmuller, Elodie Bourgeat-Lami, Matteo Ciccotti, Costantino Creton, Damien Montarnal","doi":"10.1002/macp.202400475","DOIUrl":null,"url":null,"abstract":"<p>This work investigates the correlation between the formulation of waterborne acrylic pressure-sensitive adhesives (PSAs) and their resulting adhesive performance. A library of <i>n</i>-butyl acrylate-based latexes is synthesized via miniemulsion polymerization. Controlled variations in the composition of these polyacrylates – such as the inclusion of rigid comonomers, latent crosslinkers and chain transfer agents – enabled precise control over key network structures in the particles leading then to a range of physical parameters in the cast PSA films such as the glass transition temperature, entanglement and crosslink density. The viscoelastic and mechanical behaviors of the resulting networks are carefully characterized using a combination of techniques, including linear rheology, dynamic mechanical analysis, and tensile testing. These properties are then correlated with adhesive performance, as measured by probe tack and shear holding time tests. This comprehensive approach allowed for the identification of the optimal formulation balance that delivers the best compromises of adhesive performance, directly correlating these outcomes with the macromolecular design.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlating Formulation and Performance in All-Acrylic Waterborne Pressure Sensitive Adhesive Latexes\",\"authors\":\"Julie Bratasanu, Victoria Aguilar, Leila Issoufou Alfari, Mathieu Leocmach, Benoit Mahler, Eric Drockenmuller, Elodie Bourgeat-Lami, Matteo Ciccotti, Costantino Creton, Damien Montarnal\",\"doi\":\"10.1002/macp.202400475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work investigates the correlation between the formulation of waterborne acrylic pressure-sensitive adhesives (PSAs) and their resulting adhesive performance. A library of <i>n</i>-butyl acrylate-based latexes is synthesized via miniemulsion polymerization. Controlled variations in the composition of these polyacrylates – such as the inclusion of rigid comonomers, latent crosslinkers and chain transfer agents – enabled precise control over key network structures in the particles leading then to a range of physical parameters in the cast PSA films such as the glass transition temperature, entanglement and crosslink density. The viscoelastic and mechanical behaviors of the resulting networks are carefully characterized using a combination of techniques, including linear rheology, dynamic mechanical analysis, and tensile testing. These properties are then correlated with adhesive performance, as measured by probe tack and shear holding time tests. This comprehensive approach allowed for the identification of the optimal formulation balance that delivers the best compromises of adhesive performance, directly correlating these outcomes with the macromolecular design.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"226 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400475\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400475","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Correlating Formulation and Performance in All-Acrylic Waterborne Pressure Sensitive Adhesive Latexes
This work investigates the correlation between the formulation of waterborne acrylic pressure-sensitive adhesives (PSAs) and their resulting adhesive performance. A library of n-butyl acrylate-based latexes is synthesized via miniemulsion polymerization. Controlled variations in the composition of these polyacrylates – such as the inclusion of rigid comonomers, latent crosslinkers and chain transfer agents – enabled precise control over key network structures in the particles leading then to a range of physical parameters in the cast PSA films such as the glass transition temperature, entanglement and crosslink density. The viscoelastic and mechanical behaviors of the resulting networks are carefully characterized using a combination of techniques, including linear rheology, dynamic mechanical analysis, and tensile testing. These properties are then correlated with adhesive performance, as measured by probe tack and shear holding time tests. This comprehensive approach allowed for the identification of the optimal formulation balance that delivers the best compromises of adhesive performance, directly correlating these outcomes with the macromolecular design.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.