流体静力近似的三个极限

IF 1 2区 数学 Q1 MATHEMATICS
Ken Furukawa, Yoshikazu Giga, Matthias Hieber, Amru Hussein, Takahito Kashiwabara, Marc Wrona
{"title":"流体静力近似的三个极限","authors":"Ken Furukawa,&nbsp;Yoshikazu Giga,&nbsp;Matthias Hieber,&nbsp;Amru Hussein,&nbsp;Takahito Kashiwabara,&nbsp;Marc Wrona","doi":"10.1112/jlms.70130","DOIUrl":null,"url":null,"abstract":"<p>The primitive equations are derived from the 3D Navier–Stokes equations by the hydrostatic approximation. Formally, assuming an <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>-thin domain and anisotropic viscosities with vertical viscosity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ν</mi>\n <mi>z</mi>\n </msub>\n <mo>=</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>ε</mi>\n <mi>γ</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\nu _z=\\mathcal {O}(\\varepsilon ^\\gamma)$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\gamma =2$</annotation>\n </semantics></math>, one obtains the primitive equations with full viscosity as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0$</annotation>\n </semantics></math>. Here, we take two more limit equations into consideration: For <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&lt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\gamma &lt;2$</annotation>\n </semantics></math> the 2D Navier–Stokes equations are obtained. For <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\gamma &gt;2$</annotation>\n </semantics></math> the primitive equations with only horizontal viscosity <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <msub>\n <mi>Δ</mi>\n <mi>H</mi>\n </msub>\n </mrow>\n <annotation>$-\\Delta _H$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0$</annotation>\n </semantics></math>. Thus, there are three possible limits of the hydrostatic approximation depending on the assumption on the vertical viscosity. The latter convergence has been proven recently by Li, Titi, and Yuan using energy estimates. Here, we consider more generally <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ν</mi>\n <mi>z</mi>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>ε</mi>\n <mn>2</mn>\n </msup>\n <mi>δ</mi>\n </mrow>\n <annotation>$\\nu _z=\\varepsilon ^2 \\delta$</annotation>\n </semantics></math> and show how maximal regularity methods and quadratic inequalities can be an efficient approach to the same end for <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon,\\delta \\rightarrow 0$</annotation>\n </semantics></math>. The flexibility of our methods is also illustrated by the convergence for <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\delta \\rightarrow \\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0$</annotation>\n </semantics></math> to the 2D Navier–Stokes equations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70130","citationCount":"0","resultStr":"{\"title\":\"The three limits of the hydrostatic approximation\",\"authors\":\"Ken Furukawa,&nbsp;Yoshikazu Giga,&nbsp;Matthias Hieber,&nbsp;Amru Hussein,&nbsp;Takahito Kashiwabara,&nbsp;Marc Wrona\",\"doi\":\"10.1112/jlms.70130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The primitive equations are derived from the 3D Navier–Stokes equations by the hydrostatic approximation. Formally, assuming an <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon$</annotation>\\n </semantics></math>-thin domain and anisotropic viscosities with vertical viscosity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ν</mi>\\n <mi>z</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>ε</mi>\\n <mi>γ</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\nu _z=\\\\mathcal {O}(\\\\varepsilon ^\\\\gamma)$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\gamma =2$</annotation>\\n </semantics></math>, one obtains the primitive equations with full viscosity as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\varepsilon \\\\rightarrow 0$</annotation>\\n </semantics></math>. Here, we take two more limit equations into consideration: For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>&lt;</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\gamma &lt;2$</annotation>\\n </semantics></math> the 2D Navier–Stokes equations are obtained. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>&gt;</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\gamma &gt;2$</annotation>\\n </semantics></math> the primitive equations with only horizontal viscosity <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <msub>\\n <mi>Δ</mi>\\n <mi>H</mi>\\n </msub>\\n </mrow>\\n <annotation>$-\\\\Delta _H$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\varepsilon \\\\rightarrow 0$</annotation>\\n </semantics></math>. Thus, there are three possible limits of the hydrostatic approximation depending on the assumption on the vertical viscosity. The latter convergence has been proven recently by Li, Titi, and Yuan using energy estimates. Here, we consider more generally <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ν</mi>\\n <mi>z</mi>\\n </msub>\\n <mo>=</mo>\\n <msup>\\n <mi>ε</mi>\\n <mn>2</mn>\\n </msup>\\n <mi>δ</mi>\\n </mrow>\\n <annotation>$\\\\nu _z=\\\\varepsilon ^2 \\\\delta$</annotation>\\n </semantics></math> and show how maximal regularity methods and quadratic inequalities can be an efficient approach to the same end for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\varepsilon,\\\\delta \\\\rightarrow 0$</annotation>\\n </semantics></math>. The flexibility of our methods is also illustrated by the convergence for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\delta \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\varepsilon \\\\rightarrow 0$</annotation>\\n </semantics></math> to the 2D Navier–Stokes equations.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70130\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70130","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

原始方程由三维Navier-Stokes方程通过流体静力近似导出。正式地说,假设ε $\varepsilon$ -薄域和各向异性粘度,垂直粘度ν z = 0 (ε γ)) $\nu _z=\mathcal {O}(\varepsilon ^\gamma)$其中γ = 2 $\gamma =2$,则得到ε→0 $\varepsilon \rightarrow 0$的全黏度原始方程。这里,我们再考虑两个极限方程:对于γ &lt;2 $\gamma <2$得到二维Navier-Stokes方程。对于γ &gt;2 $\gamma >2$只有水平黏度的原始方程- Δ H $-\Delta _H$为ε→0 $\varepsilon \rightarrow 0$。因此,根据对垂直粘度的假设,流体静力学近似有三种可能的极限。后一种收敛性最近由Li、Titi和Yuan用能量估计证明。这里,我们更一般地考虑ν z = ε 2 δ $\nu _z=\varepsilon ^2 \delta$,并展示了最大正则性方法和二次不等式如何能够有效地达到相同的目的ε, δ→0 $\varepsilon,\delta \rightarrow 0$。对于二维Navier-Stokes方程,δ→∞$\delta \rightarrow \infty$和ε→0 $\varepsilon \rightarrow 0$的收敛性也说明了我们方法的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The three limits of the hydrostatic approximation

The three limits of the hydrostatic approximation

The primitive equations are derived from the 3D Navier–Stokes equations by the hydrostatic approximation. Formally, assuming an ε $\varepsilon$ -thin domain and anisotropic viscosities with vertical viscosity ν z = O ( ε γ ) $\nu _z=\mathcal {O}(\varepsilon ^\gamma)$ where γ = 2 $\gamma =2$ , one obtains the primitive equations with full viscosity as ε 0 $\varepsilon \rightarrow 0$ . Here, we take two more limit equations into consideration: For γ < 2 $\gamma <2$ the 2D Navier–Stokes equations are obtained. For γ > 2 $\gamma >2$ the primitive equations with only horizontal viscosity Δ H $-\Delta _H$ as ε 0 $\varepsilon \rightarrow 0$ . Thus, there are three possible limits of the hydrostatic approximation depending on the assumption on the vertical viscosity. The latter convergence has been proven recently by Li, Titi, and Yuan using energy estimates. Here, we consider more generally ν z = ε 2 δ $\nu _z=\varepsilon ^2 \delta$ and show how maximal regularity methods and quadratic inequalities can be an efficient approach to the same end for ε , δ 0 $\varepsilon,\delta \rightarrow 0$ . The flexibility of our methods is also illustrated by the convergence for δ $\delta \rightarrow \infty$ and ε 0 $\varepsilon \rightarrow 0$ to the 2D Navier–Stokes equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信