{"title":"无土耕作和非化学耕作粮食生产系统的营养和环境方面的比较","authors":"Wannaporn Hatongkham, Kitti Sranacharoenpong, Unchalee Suwanmanee","doi":"10.1002/sae2.70060","DOIUrl":null,"url":null,"abstract":"<p>Plant factory with artificial light (PFAL) technology is a soilless cultivation system designed to optimize plant growth, productivity, and product quality while ensuring the efficient use of water and fertilizers. In contrast, nonchemical farming (N-CF) focuses on using natural materials and intentionally avoids synthetic fertilizers, pesticides, and herbicides. Both systems can be employed for commodity production to help ensure food security. However, there are ongoing concerns regarding nutritional value and environmental sustainability. This study compared nutritional compositions, antioxidant contents, environmental impacts, and carbon footprints of kale (<i>Brassica oleracea</i> L.) cultivated in PFAL and N-CF systems. The proximate values of kale from both systems did not show significant differences (<i>p</i> < 0.05). However, the results indicated that antioxidant contents—measured through polyphenol analysis, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay—were significantly lower in kale harvested from PFAL system compared to N-CF system after 3 months of growth. The polyphenol, ORAC and FRAP of PFAL kale were 68.95 mg GAE/100 g, 1321.25 and 111.95 μmol TE/100 g fresh weight, respectively, while those of N-CF kale were 136.06 mg GAE/100 g, 3,519.87 and 220.17 μmol TE/100 g fresh weight, respectively. The carbon dioxide (CO<sub>2</sub>) emissions of 3 month-kale from PFAL and N-CF productions were 168.61 and 14.75 kg CO<sub>2</sub> eq./kg of kale, respectively. Therefore, new policies must focus on mitigating environmental impacts by implementing process certifications that encourage reduced environmental footprints. However, these policies must prioritize the nutritional adequacy of food produced through various agricultural systems.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70060","citationCount":"0","resultStr":"{\"title\":\"Comparing of Nutritional and Environmental Aspects of Soilless and Nonchemical Farming Food Production Systems\",\"authors\":\"Wannaporn Hatongkham, Kitti Sranacharoenpong, Unchalee Suwanmanee\",\"doi\":\"10.1002/sae2.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant factory with artificial light (PFAL) technology is a soilless cultivation system designed to optimize plant growth, productivity, and product quality while ensuring the efficient use of water and fertilizers. In contrast, nonchemical farming (N-CF) focuses on using natural materials and intentionally avoids synthetic fertilizers, pesticides, and herbicides. Both systems can be employed for commodity production to help ensure food security. However, there are ongoing concerns regarding nutritional value and environmental sustainability. This study compared nutritional compositions, antioxidant contents, environmental impacts, and carbon footprints of kale (<i>Brassica oleracea</i> L.) cultivated in PFAL and N-CF systems. The proximate values of kale from both systems did not show significant differences (<i>p</i> < 0.05). However, the results indicated that antioxidant contents—measured through polyphenol analysis, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay—were significantly lower in kale harvested from PFAL system compared to N-CF system after 3 months of growth. The polyphenol, ORAC and FRAP of PFAL kale were 68.95 mg GAE/100 g, 1321.25 and 111.95 μmol TE/100 g fresh weight, respectively, while those of N-CF kale were 136.06 mg GAE/100 g, 3,519.87 and 220.17 μmol TE/100 g fresh weight, respectively. The carbon dioxide (CO<sub>2</sub>) emissions of 3 month-kale from PFAL and N-CF productions were 168.61 and 14.75 kg CO<sub>2</sub> eq./kg of kale, respectively. Therefore, new policies must focus on mitigating environmental impacts by implementing process certifications that encourage reduced environmental footprints. However, these policies must prioritize the nutritional adequacy of food produced through various agricultural systems.</p>\",\"PeriodicalId\":100834,\"journal\":{\"name\":\"Journal of Sustainable Agriculture and Environment\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Agriculture and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing of Nutritional and Environmental Aspects of Soilless and Nonchemical Farming Food Production Systems
Plant factory with artificial light (PFAL) technology is a soilless cultivation system designed to optimize plant growth, productivity, and product quality while ensuring the efficient use of water and fertilizers. In contrast, nonchemical farming (N-CF) focuses on using natural materials and intentionally avoids synthetic fertilizers, pesticides, and herbicides. Both systems can be employed for commodity production to help ensure food security. However, there are ongoing concerns regarding nutritional value and environmental sustainability. This study compared nutritional compositions, antioxidant contents, environmental impacts, and carbon footprints of kale (Brassica oleracea L.) cultivated in PFAL and N-CF systems. The proximate values of kale from both systems did not show significant differences (p < 0.05). However, the results indicated that antioxidant contents—measured through polyphenol analysis, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay—were significantly lower in kale harvested from PFAL system compared to N-CF system after 3 months of growth. The polyphenol, ORAC and FRAP of PFAL kale were 68.95 mg GAE/100 g, 1321.25 and 111.95 μmol TE/100 g fresh weight, respectively, while those of N-CF kale were 136.06 mg GAE/100 g, 3,519.87 and 220.17 μmol TE/100 g fresh weight, respectively. The carbon dioxide (CO2) emissions of 3 month-kale from PFAL and N-CF productions were 168.61 and 14.75 kg CO2 eq./kg of kale, respectively. Therefore, new policies must focus on mitigating environmental impacts by implementing process certifications that encourage reduced environmental footprints. However, these policies must prioritize the nutritional adequacy of food produced through various agricultural systems.