Yangyang Zhao, Laure Resplandy, Xianhui Sean Wan, Fan Yang, Enhui Liao, Bess Ward
{"title":"北印度洋N2O产生与排放的解耦","authors":"Yangyang Zhao, Laure Resplandy, Xianhui Sean Wan, Fan Yang, Enhui Liao, Bess Ward","doi":"10.1029/2024GB008481","DOIUrl":null,"url":null,"abstract":"<p>The northern Indian Ocean is a hotspot of nitrous oxide (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O) emission to the atmosphere. Yet, the direct link between production and emission of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O in this region is still poorly constrained, in particular the relative contributions of denitrification, nitrification and ocean transport to the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O efflux. Here, we implemented a mechanistically based <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O cycling module into a regional ocean model of the Indian Ocean to examine how the biological production and transport of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O control the spatial variation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O emissions in the basin. The model captures the upper ocean physical and biogeochemical dynamics of the northern Indian Ocean, including vertical and horizontal <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O distribution observed in situ and regionally integrated <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O emissions of 286 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 152 Gg N <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>yr</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{yr}}^{-1}$</annotation>\n </semantics></math> (annual mean <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> seasonal range) in the lower range of the observation-based reconstruction (391 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 237 Gg N <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>yr</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{yr}}^{-1}$</annotation>\n </semantics></math>). <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O emissions are primarily fueled by nitrification in or right below the surface mixed layer (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>57%, including 26% in the mixed layer and 31% right below), followed by denitrification in the oxygen minimum zones (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>30%) and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O produced elsewhere and transported into the region (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>13%). Overall, <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>74% of the emitted <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O is produced in subsurface and transported to the surface in regions of coastal upwelling, winter convection or turbulent mixing. This spatial decoupling between <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O production and emissions underscores the need to consider not only changes in environmental factors critical to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O production (oxygen, primary productivity etc.) but also shifts in ocean circulation that control emissions when evaluating future changes in global oceanic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math>O emissions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008481","citationCount":"0","resultStr":"{\"title\":\"Decoupling of N2O Production and Emissions in the Northern Indian Ocean\",\"authors\":\"Yangyang Zhao, Laure Resplandy, Xianhui Sean Wan, Fan Yang, Enhui Liao, Bess Ward\",\"doi\":\"10.1029/2024GB008481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The northern Indian Ocean is a hotspot of nitrous oxide (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O) emission to the atmosphere. Yet, the direct link between production and emission of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O in this region is still poorly constrained, in particular the relative contributions of denitrification, nitrification and ocean transport to the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O efflux. Here, we implemented a mechanistically based <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O cycling module into a regional ocean model of the Indian Ocean to examine how the biological production and transport of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O control the spatial variation of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O emissions in the basin. The model captures the upper ocean physical and biogeochemical dynamics of the northern Indian Ocean, including vertical and horizontal <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O distribution observed in situ and regionally integrated <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O emissions of 286 <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation> $\\\\pm $</annotation>\\n </semantics></math> 152 Gg N <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>yr</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{yr}}^{-1}$</annotation>\\n </semantics></math> (annual mean <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation> $\\\\pm $</annotation>\\n </semantics></math> seasonal range) in the lower range of the observation-based reconstruction (391 <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation> $\\\\pm $</annotation>\\n </semantics></math> 237 Gg N <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>yr</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{yr}}^{-1}$</annotation>\\n </semantics></math>). <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O emissions are primarily fueled by nitrification in or right below the surface mixed layer (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>57%, including 26% in the mixed layer and 31% right below), followed by denitrification in the oxygen minimum zones (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>30%) and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O produced elsewhere and transported into the region (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>13%). Overall, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>74% of the emitted <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O is produced in subsurface and transported to the surface in regions of coastal upwelling, winter convection or turbulent mixing. This spatial decoupling between <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O production and emissions underscores the need to consider not only changes in environmental factors critical to <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O production (oxygen, primary productivity etc.) but also shifts in ocean circulation that control emissions when evaluating future changes in global oceanic <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>O emissions.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008481\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008481\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008481","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Decoupling of N2O Production and Emissions in the Northern Indian Ocean
The northern Indian Ocean is a hotspot of nitrous oxide (O) emission to the atmosphere. Yet, the direct link between production and emission of O in this region is still poorly constrained, in particular the relative contributions of denitrification, nitrification and ocean transport to the O efflux. Here, we implemented a mechanistically based O cycling module into a regional ocean model of the Indian Ocean to examine how the biological production and transport of O control the spatial variation of O emissions in the basin. The model captures the upper ocean physical and biogeochemical dynamics of the northern Indian Ocean, including vertical and horizontal O distribution observed in situ and regionally integrated O emissions of 286 152 Gg N (annual mean seasonal range) in the lower range of the observation-based reconstruction (391 237 Gg N ). O emissions are primarily fueled by nitrification in or right below the surface mixed layer (57%, including 26% in the mixed layer and 31% right below), followed by denitrification in the oxygen minimum zones (30%) and O produced elsewhere and transported into the region (13%). Overall, 74% of the emitted O is produced in subsurface and transported to the surface in regions of coastal upwelling, winter convection or turbulent mixing. This spatial decoupling between O production and emissions underscores the need to consider not only changes in environmental factors critical to O production (oxygen, primary productivity etc.) but also shifts in ocean circulation that control emissions when evaluating future changes in global oceanic O emissions.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.