PM6/L8-BO薄膜的逐层工程:形成机制、能量无序和载流子迁移

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zihao Wen, Rongkun Zhou, Zilong Zheng, Yi Zhao
{"title":"PM6/L8-BO薄膜的逐层工程:形成机制、能量无序和载流子迁移","authors":"Zihao Wen,&nbsp;Rongkun Zhou,&nbsp;Zilong Zheng,&nbsp;Yi Zhao","doi":"10.1002/agt2.729","DOIUrl":null,"url":null,"abstract":"<p>Layer-by-layer (LBL) process has emerged as a promising method in the advancement of organic photovoltaics, emphasizing scalability and reproducibility. More importantly, it provides enhanced morphological control for boosting carrier mobility (<i>μ</i>) and power conversion efficiency. By employing a multiscale approach that combined first-principles calculations, molecular dynamics simulations, and kinetic Monte Carlo methods, the relationship between LBL morphology engineering and carrier mobility in donor/acceptor (PM6/L8-BO) thin films is elucidated. During solvent evaporation, the order of solid-phase formation in LBL films was top surface, bottom region, and then the middle region. The early solid precipitation from precursor solutions was acceptor, resulting in a well-ordered molecular arrangement and reducing energy disorder of acceptor LUMO levels. Furthermore, the difference in energy disorders between the A/D blend region and the pure A or D domains enabled LBL morphology engineering to balance electron and hole mobilities, thereby mitigating charge accumulation and recombination. LBL-manufactured films presented higher carrier mobility (<span></span><math>\n <semantics>\n <msubsup>\n <mi>μ</mi>\n <mi>e</mi>\n <mi>LBL</mi>\n </msubsup>\n <annotation>$\\mu _{\\mathrm{e}}^{{\\mathrm{LBL}}}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <msubsup>\n <mi>μ</mi>\n <mi>h</mi>\n <mi>LBL</mi>\n </msubsup>\n <annotation>$\\mu _{\\mathrm{h}}^{{\\mathrm{LBL}}}$</annotation>\n </semantics></math> = 1.9 × 10<sup>−3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>) compared to bulk heterojunction (BHJ) films (<span></span><math>\n <semantics>\n <msubsup>\n <mi>μ</mi>\n <mi>e</mi>\n <mi>BHJ</mi>\n </msubsup>\n <annotation>$\\mu _{\\mathrm{e}}^{{\\mathrm{BHJ}}}$</annotation>\n </semantics></math> &gt; <span></span><math>\n <semantics>\n <msubsup>\n <mi>μ</mi>\n <mi>h</mi>\n <mi>BHJ</mi>\n </msubsup>\n <annotation>$\\mu _{\\mathrm{h}}^{{\\mathrm{BHJ}}}$</annotation>\n </semantics></math> = 0.1 × 10<sup>−3</sup> cm<sup>2</sup>·V<sup>−1</sup> s<sup>−1</sup>). These mechanisms provided insights into strategies for enhancing charge extraction of photo-generated charge carriers through LBL engineering, driving the development of efficient organic photovoltaic materials.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 4","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.729","citationCount":"0","resultStr":"{\"title\":\"PM6/L8-BO Thin Films through Layer-by-Layer Engineering: Formation Mechanism, Energetic Disorder, and Carrier Mobility\",\"authors\":\"Zihao Wen,&nbsp;Rongkun Zhou,&nbsp;Zilong Zheng,&nbsp;Yi Zhao\",\"doi\":\"10.1002/agt2.729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Layer-by-layer (LBL) process has emerged as a promising method in the advancement of organic photovoltaics, emphasizing scalability and reproducibility. More importantly, it provides enhanced morphological control for boosting carrier mobility (<i>μ</i>) and power conversion efficiency. By employing a multiscale approach that combined first-principles calculations, molecular dynamics simulations, and kinetic Monte Carlo methods, the relationship between LBL morphology engineering and carrier mobility in donor/acceptor (PM6/L8-BO) thin films is elucidated. During solvent evaporation, the order of solid-phase formation in LBL films was top surface, bottom region, and then the middle region. The early solid precipitation from precursor solutions was acceptor, resulting in a well-ordered molecular arrangement and reducing energy disorder of acceptor LUMO levels. Furthermore, the difference in energy disorders between the A/D blend region and the pure A or D domains enabled LBL morphology engineering to balance electron and hole mobilities, thereby mitigating charge accumulation and recombination. LBL-manufactured films presented higher carrier mobility (<span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>μ</mi>\\n <mi>e</mi>\\n <mi>LBL</mi>\\n </msubsup>\\n <annotation>$\\\\mu _{\\\\mathrm{e}}^{{\\\\mathrm{LBL}}}$</annotation>\\n </semantics></math> = <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>μ</mi>\\n <mi>h</mi>\\n <mi>LBL</mi>\\n </msubsup>\\n <annotation>$\\\\mu _{\\\\mathrm{h}}^{{\\\\mathrm{LBL}}}$</annotation>\\n </semantics></math> = 1.9 × 10<sup>−3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>) compared to bulk heterojunction (BHJ) films (<span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>μ</mi>\\n <mi>e</mi>\\n <mi>BHJ</mi>\\n </msubsup>\\n <annotation>$\\\\mu _{\\\\mathrm{e}}^{{\\\\mathrm{BHJ}}}$</annotation>\\n </semantics></math> &gt; <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>μ</mi>\\n <mi>h</mi>\\n <mi>BHJ</mi>\\n </msubsup>\\n <annotation>$\\\\mu _{\\\\mathrm{h}}^{{\\\\mathrm{BHJ}}}$</annotation>\\n </semantics></math> = 0.1 × 10<sup>−3</sup> cm<sup>2</sup>·V<sup>−1</sup> s<sup>−1</sup>). These mechanisms provided insights into strategies for enhancing charge extraction of photo-generated charge carriers through LBL engineering, driving the development of efficient organic photovoltaic materials.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.729\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

层逐层(LBL)工艺强调可扩展性和可重复性,已成为有机光伏发展的一种有前途的方法。更重要的是,它提供了增强的形态控制,以提高载流子迁移率(μ)和功率转换效率。通过结合第一性原理计算、分子动力学模拟和动力学蒙特卡罗方法的多尺度方法,阐明了LBL形态工程与供体/受体(PM6/L8-BO)薄膜中载流子迁移率之间的关系。在溶剂蒸发过程中,LBL膜中固相的形成顺序为上表面、下区域、中间区域。从前驱体溶液中析出的早期固体为受体,使分子排列有序,降低了受体LUMO能级的能量无序性。此外,A/D混合区与纯A或D域之间能量紊乱的差异使得LBL形态学工程能够平衡电子和空穴的迁移,从而减轻电荷的积累和重组。LBL制备的薄膜具有较高的载流子迁移率(μ e LBL $\mu _{\mathrm{e}}^{{\mathrm{LBL}}}$ = μ h LBL $\mu _{\mathrm{h}}^{{\mathrm{LBL}} $ = 1.9 × 10−3 cm2 V−1 s−1)(BHJ)薄膜(μ e BHJ $\mu _{\ mathm {e}}^{{\ mathm {BHJ}}}$ >;μ h BHJ $\mu _{\ mathm {h}}^{{\ mathm {BHJ}}}$ = 0.1 × 10−3 cm2·V−1 s−1)。这些机制为通过LBL工程增强光生载流子的电荷提取策略提供了见解,推动了高效有机光伏材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PM6/L8-BO Thin Films through Layer-by-Layer Engineering: Formation Mechanism, Energetic Disorder, and Carrier Mobility

PM6/L8-BO Thin Films through Layer-by-Layer Engineering: Formation Mechanism, Energetic Disorder, and Carrier Mobility

Layer-by-layer (LBL) process has emerged as a promising method in the advancement of organic photovoltaics, emphasizing scalability and reproducibility. More importantly, it provides enhanced morphological control for boosting carrier mobility (μ) and power conversion efficiency. By employing a multiscale approach that combined first-principles calculations, molecular dynamics simulations, and kinetic Monte Carlo methods, the relationship between LBL morphology engineering and carrier mobility in donor/acceptor (PM6/L8-BO) thin films is elucidated. During solvent evaporation, the order of solid-phase formation in LBL films was top surface, bottom region, and then the middle region. The early solid precipitation from precursor solutions was acceptor, resulting in a well-ordered molecular arrangement and reducing energy disorder of acceptor LUMO levels. Furthermore, the difference in energy disorders between the A/D blend region and the pure A or D domains enabled LBL morphology engineering to balance electron and hole mobilities, thereby mitigating charge accumulation and recombination. LBL-manufactured films presented higher carrier mobility ( μ e LBL $\mu _{\mathrm{e}}^{{\mathrm{LBL}}}$ = μ h LBL $\mu _{\mathrm{h}}^{{\mathrm{LBL}}}$ = 1.9 × 10−3 cm2 V−1 s−1) compared to bulk heterojunction (BHJ) films ( μ e BHJ $\mu _{\mathrm{e}}^{{\mathrm{BHJ}}}$ > μ h BHJ $\mu _{\mathrm{h}}^{{\mathrm{BHJ}}}$ = 0.1 × 10−3 cm2·V−1 s−1). These mechanisms provided insights into strategies for enhancing charge extraction of photo-generated charge carriers through LBL engineering, driving the development of efficient organic photovoltaic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信