Chitra Sulkan, Prashant Kumar Thakur, Shailza Sharma, Neeraj Das
{"title":"优化双面太阳能电池板中的 EVA 分解:聚合油和材料的可持续回收","authors":"Chitra Sulkan, Prashant Kumar Thakur, Shailza Sharma, Neeraj Das","doi":"10.1002/adsu.202500004","DOIUrl":null,"url":null,"abstract":"<p>The disposal of end-of-life (EOL) photovoltaic (PV) solar panels presents environmental challenges due to hazardous materials and complex structure. This study proposes an optimized method for recycling bifacial solar panels, which lack a back sheet and use ethylene-vinyl acetate (EVA) as the sole encapsulant. The process achieves 100% recovery of valuable materials, including polymerized oil, clean glass, solar cells, and copper tape. Unlike traditional PV panels with back sheet polymers like PVF, PET, or PVDF, bifacial panels simplify the recycling process. EVA, composed of hydrogen, carbon, and oxygen, is more environmentally friendly, especially without fluorinated compounds. Using a modified pyrolysis reactor, the EVA layer is degraded in inert conditions, minimizing emissions and producing polymerized oil. This oil can be used as a lubricant, while the recovered glass, solar cells, and copper tape are reusable in manufacturing new panels. Optimized oil yield is achieved using Response Surface Methodology (RSM) and Box-Behnken Design (BBD). At a heating rate of 8.92 °C min<sup>−1</sup>, a 31.82-min hold time, and a maximum temperature of 528.22 °C, the process yields 57.53% polymerized oil. The oil is characterized by thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR), meeting ASTM and Australian diesel standards. This method maximizes material recovery and supports a circular economy, enhancing solar energy system sustainability.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized EVA Decomposition in Bifacial Solar Panels: Sustainable Recovery of Polymerized Oil and Materials\",\"authors\":\"Chitra Sulkan, Prashant Kumar Thakur, Shailza Sharma, Neeraj Das\",\"doi\":\"10.1002/adsu.202500004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The disposal of end-of-life (EOL) photovoltaic (PV) solar panels presents environmental challenges due to hazardous materials and complex structure. This study proposes an optimized method for recycling bifacial solar panels, which lack a back sheet and use ethylene-vinyl acetate (EVA) as the sole encapsulant. The process achieves 100% recovery of valuable materials, including polymerized oil, clean glass, solar cells, and copper tape. Unlike traditional PV panels with back sheet polymers like PVF, PET, or PVDF, bifacial panels simplify the recycling process. EVA, composed of hydrogen, carbon, and oxygen, is more environmentally friendly, especially without fluorinated compounds. Using a modified pyrolysis reactor, the EVA layer is degraded in inert conditions, minimizing emissions and producing polymerized oil. This oil can be used as a lubricant, while the recovered glass, solar cells, and copper tape are reusable in manufacturing new panels. Optimized oil yield is achieved using Response Surface Methodology (RSM) and Box-Behnken Design (BBD). At a heating rate of 8.92 °C min<sup>−1</sup>, a 31.82-min hold time, and a maximum temperature of 528.22 °C, the process yields 57.53% polymerized oil. The oil is characterized by thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR), meeting ASTM and Australian diesel standards. This method maximizes material recovery and supports a circular economy, enhancing solar energy system sustainability.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500004\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Optimized EVA Decomposition in Bifacial Solar Panels: Sustainable Recovery of Polymerized Oil and Materials
The disposal of end-of-life (EOL) photovoltaic (PV) solar panels presents environmental challenges due to hazardous materials and complex structure. This study proposes an optimized method for recycling bifacial solar panels, which lack a back sheet and use ethylene-vinyl acetate (EVA) as the sole encapsulant. The process achieves 100% recovery of valuable materials, including polymerized oil, clean glass, solar cells, and copper tape. Unlike traditional PV panels with back sheet polymers like PVF, PET, or PVDF, bifacial panels simplify the recycling process. EVA, composed of hydrogen, carbon, and oxygen, is more environmentally friendly, especially without fluorinated compounds. Using a modified pyrolysis reactor, the EVA layer is degraded in inert conditions, minimizing emissions and producing polymerized oil. This oil can be used as a lubricant, while the recovered glass, solar cells, and copper tape are reusable in manufacturing new panels. Optimized oil yield is achieved using Response Surface Methodology (RSM) and Box-Behnken Design (BBD). At a heating rate of 8.92 °C min−1, a 31.82-min hold time, and a maximum temperature of 528.22 °C, the process yields 57.53% polymerized oil. The oil is characterized by thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR), meeting ASTM and Australian diesel standards. This method maximizes material recovery and supports a circular economy, enhancing solar energy system sustainability.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.