Jiajia Wu, Mengqing Ren, Ming Chen, Xuanyu Liu, Tao Jin, Lili Wu
{"title":"基于多重可逆键的自修复水性聚氨酯弹性体,具有良好的复合导体机械性能","authors":"Jiajia Wu, Mengqing Ren, Ming Chen, Xuanyu Liu, Tao Jin, Lili Wu","doi":"10.1002/macp.202400435","DOIUrl":null,"url":null,"abstract":"<p>As a functional material, polyurethane elastomers have a wide range of applications in fields such as flexible wearable devices and healthcare but are prone to damage during use. As a result, they are often incorporated with self-healing properties to prolong their service life. The preparation of polyurethane elastomers with excellent mechanical and self-healing properties has become crucial to addressing this issue. In this study, a new self-healing system with excellent mechanical properties is developed by reacting butanedione oxime (DMG) and gallic acid (GA) with isocyanate (─NCO) to introduce oxime-carbamate bonds and phenol-carbamate bonds into waterborne polyurethane. The triple dynamic reversible synergistic network formed through multiple reversible covalent bonds and hydrogen bonds enhances the mechanical and self-healing properties of the waterborne polyurethane elastomers. The results demonstrate that the synthesized polyurethane elastomer films exhibit excellent mechanical properties (strength of 41.02 MPa, elongation at break of 955.9%, toughness of 112.17 MJ m<sup>−3</sup>) and self-healing properties (healing efficiency of 91.21%). In addition, the composite conductor (DG-WPU-CNTs) prepared by incorporating this polyurethane elastomer with carbon nanotubes (CNTs) exhibits excellent sensitivity, stability, and self-healing properties, providing a basis for its application in flexible wearable devices.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Healing Waterborne Polyurethane Elastomers Based on Multiple Reversible Bonds with Good Mechanical Performance for Composite Conductors\",\"authors\":\"Jiajia Wu, Mengqing Ren, Ming Chen, Xuanyu Liu, Tao Jin, Lili Wu\",\"doi\":\"10.1002/macp.202400435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a functional material, polyurethane elastomers have a wide range of applications in fields such as flexible wearable devices and healthcare but are prone to damage during use. As a result, they are often incorporated with self-healing properties to prolong their service life. The preparation of polyurethane elastomers with excellent mechanical and self-healing properties has become crucial to addressing this issue. In this study, a new self-healing system with excellent mechanical properties is developed by reacting butanedione oxime (DMG) and gallic acid (GA) with isocyanate (─NCO) to introduce oxime-carbamate bonds and phenol-carbamate bonds into waterborne polyurethane. The triple dynamic reversible synergistic network formed through multiple reversible covalent bonds and hydrogen bonds enhances the mechanical and self-healing properties of the waterborne polyurethane elastomers. The results demonstrate that the synthesized polyurethane elastomer films exhibit excellent mechanical properties (strength of 41.02 MPa, elongation at break of 955.9%, toughness of 112.17 MJ m<sup>−3</sup>) and self-healing properties (healing efficiency of 91.21%). In addition, the composite conductor (DG-WPU-CNTs) prepared by incorporating this polyurethane elastomer with carbon nanotubes (CNTs) exhibits excellent sensitivity, stability, and self-healing properties, providing a basis for its application in flexible wearable devices.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"226 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400435\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400435","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Self-Healing Waterborne Polyurethane Elastomers Based on Multiple Reversible Bonds with Good Mechanical Performance for Composite Conductors
As a functional material, polyurethane elastomers have a wide range of applications in fields such as flexible wearable devices and healthcare but are prone to damage during use. As a result, they are often incorporated with self-healing properties to prolong their service life. The preparation of polyurethane elastomers with excellent mechanical and self-healing properties has become crucial to addressing this issue. In this study, a new self-healing system with excellent mechanical properties is developed by reacting butanedione oxime (DMG) and gallic acid (GA) with isocyanate (─NCO) to introduce oxime-carbamate bonds and phenol-carbamate bonds into waterborne polyurethane. The triple dynamic reversible synergistic network formed through multiple reversible covalent bonds and hydrogen bonds enhances the mechanical and self-healing properties of the waterborne polyurethane elastomers. The results demonstrate that the synthesized polyurethane elastomer films exhibit excellent mechanical properties (strength of 41.02 MPa, elongation at break of 955.9%, toughness of 112.17 MJ m−3) and self-healing properties (healing efficiency of 91.21%). In addition, the composite conductor (DG-WPU-CNTs) prepared by incorporating this polyurethane elastomer with carbon nanotubes (CNTs) exhibits excellent sensitivity, stability, and self-healing properties, providing a basis for its application in flexible wearable devices.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.