基于PNIPAM牺牲层的高分辨率图像化和高效制备液态金属微电极

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xing Liu, Jiahui Zheng, Xiaoyun Xu, Shilei Hao, Ning Hu, Xiaolin Zheng
{"title":"基于PNIPAM牺牲层的高分辨率图像化和高效制备液态金属微电极","authors":"Xing Liu,&nbsp;Jiahui Zheng,&nbsp;Xiaoyun Xu,&nbsp;Shilei Hao,&nbsp;Ning Hu,&nbsp;Xiaolin Zheng","doi":"10.1002/admt.202401137","DOIUrl":null,"url":null,"abstract":"<p>Microelectrodes play a crucial role in microfluidic chips. However, electrodes with micron-sized geometries lead to undesired impedance increases and processing difficulties. This study introduces a method for preparing low-resistance and low-cost liquid metal microelectrodes (<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>LMEs</mi>\n </mrow>\n <annotation>$\\umu{\\rm LMEs}$</annotation>\n </semantics></math>), which leverages the distinct phase transition properties of liquid metal (LM) gallium (Ga) and Poly-N-Isopropylacrylamide (PNIPAM), along with the reversible bonding between PNIPAM and polydimethylsiloxane (PDMS). PNIPAM is spin-coated as a sacrificial layer on silanized glass and heated to dehydration. As it hydrates and swells in the water bath, Ga/PDMS can be easily peeled off, forming a precision surface-embedded <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>LME</mi>\n </mrow>\n <annotation>$\\umu{\\rm LME}$</annotation>\n </semantics></math>. The resistance of the <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>LME</mi>\n </mrow>\n <annotation>$\\umu{\\rm LME}$</annotation>\n </semantics></math> with a thickness of 25 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$\\umu{\\rm m}$</annotation>\n </semantics></math> was only 9.3% and 0.077% of the 100nm thin film Au and indium tin oxide (ITO) film microelectrode with the same plane size. Hydration and swelling of the sacrificial layer ensured the fabrication with high resolutions down to 5 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$\\umu{\\rm m}$</annotation>\n </semantics></math> and an acute angle of 15°. The electroosmotic flow tests show that the <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>LME</mi>\n </mrow>\n <annotation>$\\umu{\\rm LME}$</annotation>\n </semantics></math> effectively reduces the operating voltage compared to conventional planar Au or ITO microelectrodes. These features make it a promising candidate for electrification requirements in microfluidic devices.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 8","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Patterning and Efficient Fabricating of Liquid Metal Microelectrodes Using PNIPAM Sacrificial Layer\",\"authors\":\"Xing Liu,&nbsp;Jiahui Zheng,&nbsp;Xiaoyun Xu,&nbsp;Shilei Hao,&nbsp;Ning Hu,&nbsp;Xiaolin Zheng\",\"doi\":\"10.1002/admt.202401137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microelectrodes play a crucial role in microfluidic chips. However, electrodes with micron-sized geometries lead to undesired impedance increases and processing difficulties. This study introduces a method for preparing low-resistance and low-cost liquid metal microelectrodes (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>LMEs</mi>\\n </mrow>\\n <annotation>$\\\\umu{\\\\rm LMEs}$</annotation>\\n </semantics></math>), which leverages the distinct phase transition properties of liquid metal (LM) gallium (Ga) and Poly-N-Isopropylacrylamide (PNIPAM), along with the reversible bonding between PNIPAM and polydimethylsiloxane (PDMS). PNIPAM is spin-coated as a sacrificial layer on silanized glass and heated to dehydration. As it hydrates and swells in the water bath, Ga/PDMS can be easily peeled off, forming a precision surface-embedded <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>LME</mi>\\n </mrow>\\n <annotation>$\\\\umu{\\\\rm LME}$</annotation>\\n </semantics></math>. The resistance of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>LME</mi>\\n </mrow>\\n <annotation>$\\\\umu{\\\\rm LME}$</annotation>\\n </semantics></math> with a thickness of 25 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$\\\\umu{\\\\rm m}$</annotation>\\n </semantics></math> was only 9.3% and 0.077% of the 100nm thin film Au and indium tin oxide (ITO) film microelectrode with the same plane size. Hydration and swelling of the sacrificial layer ensured the fabrication with high resolutions down to 5 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$\\\\umu{\\\\rm m}$</annotation>\\n </semantics></math> and an acute angle of 15°. The electroosmotic flow tests show that the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mi>LME</mi>\\n </mrow>\\n <annotation>$\\\\umu{\\\\rm LME}$</annotation>\\n </semantics></math> effectively reduces the operating voltage compared to conventional planar Au or ITO microelectrodes. These features make it a promising candidate for electrification requirements in microfluidic devices.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401137\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401137","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微电极在微流控芯片中起着至关重要的作用。然而,微米尺寸的电极会导致不希望的阻抗增加和加工困难。本研究介绍了一种制备低电阻和低成本液态金属微电极(μ LMEs $\umu{\rm LMEs}$)的方法,该方法利用液态金属(LM)镓(Ga)和聚n -异丙基丙烯酰胺(PNIPAM)的不同相变特性,以及PNIPAM与聚二甲基硅氧烷(PDMS)之间的可逆键合。PNIPAM作为牺牲层被旋转涂覆在硅化玻璃上并加热至脱水。由于其在水浴中水化和膨胀,Ga/PDMS可以很容易地剥离,形成精密的表面嵌入μ LME $\umu{\rm LME}$。厚度为25 μ m的μ LME $\umu{\rm LME}$的电阻仅为相同平面尺寸的100nm薄膜Au和铟锡氧化物(ITO)薄膜微电极的9.3%和0.077%。牺牲层的水化和膨胀保证了高分辨率的制备,分辨率低至5 μ m $\umu{\rm m}$,锐角为15°。电渗流测试表明,μ LME $\umu{\rm LME}$与传统的平面Au或ITO微电极相比,有效地降低了工作电压。这些特点使其成为微流体装置电气化要求的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Resolution Patterning and Efficient Fabricating of Liquid Metal Microelectrodes Using PNIPAM Sacrificial Layer

High-Resolution Patterning and Efficient Fabricating of Liquid Metal Microelectrodes Using PNIPAM Sacrificial Layer

Microelectrodes play a crucial role in microfluidic chips. However, electrodes with micron-sized geometries lead to undesired impedance increases and processing difficulties. This study introduces a method for preparing low-resistance and low-cost liquid metal microelectrodes ( μ LMEs $\umu{\rm LMEs}$ ), which leverages the distinct phase transition properties of liquid metal (LM) gallium (Ga) and Poly-N-Isopropylacrylamide (PNIPAM), along with the reversible bonding between PNIPAM and polydimethylsiloxane (PDMS). PNIPAM is spin-coated as a sacrificial layer on silanized glass and heated to dehydration. As it hydrates and swells in the water bath, Ga/PDMS can be easily peeled off, forming a precision surface-embedded μ LME $\umu{\rm LME}$ . The resistance of the μ LME $\umu{\rm LME}$ with a thickness of 25 μ m $\umu{\rm m}$ was only 9.3% and 0.077% of the 100nm thin film Au and indium tin oxide (ITO) film microelectrode with the same plane size. Hydration and swelling of the sacrificial layer ensured the fabrication with high resolutions down to 5 μ m $\umu{\rm m}$ and an acute angle of 15°. The electroosmotic flow tests show that the μ LME $\umu{\rm LME}$ effectively reduces the operating voltage compared to conventional planar Au or ITO microelectrodes. These features make it a promising candidate for electrification requirements in microfluidic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信