高对比材料内含物对声波的渐近特性研究

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yueguang Hu, Hongyu Liu
{"title":"高对比材料内含物对声波的渐近特性研究","authors":"Yueguang Hu,&nbsp;Hongyu Liu","doi":"10.1111/sapm.70048","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the asymptotic behaviors of time-harmonic acoustic waves generated by an incident wave illuminating inhomogeneous medium inclusions with high-contrast material parameters. We derive sharp asymptotic estimates and obtain several effective acoustic obstacle scattering models when the material parameters take extreme values. The results clarify the connection between inhomogeneous medium scattering and obstacle scattering for acoustic waves, providing a clear criterion for identifying the boundary conditions of acoustic obstacles in practice. The contributions of this paper are twofold. First, we provide a rigorous mathematical characterization of the classical sound-hard and sound-soft obstacle scattering models. We demonstrate that a sound-hard obstacle can be viewed as an inhomogeneous medium inclusion with infinite mass density, while a sound-soft obstacle corresponds to an inclusion with zero mass density and zero bulk modulus. Second, we introduce two novel acoustic obstacle scattering models when the mass density of the inclusion degenerates to zero. These new models offer a fresh perspective on considering inhomogeneous medium inclusions with high-contrast material parameters.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70048","citationCount":"0","resultStr":"{\"title\":\"On Asymptotic Behaviors of Acoustic Waves Due to High-Contrast Material Inclusions\",\"authors\":\"Yueguang Hu,&nbsp;Hongyu Liu\",\"doi\":\"10.1111/sapm.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the asymptotic behaviors of time-harmonic acoustic waves generated by an incident wave illuminating inhomogeneous medium inclusions with high-contrast material parameters. We derive sharp asymptotic estimates and obtain several effective acoustic obstacle scattering models when the material parameters take extreme values. The results clarify the connection between inhomogeneous medium scattering and obstacle scattering for acoustic waves, providing a clear criterion for identifying the boundary conditions of acoustic obstacles in practice. The contributions of this paper are twofold. First, we provide a rigorous mathematical characterization of the classical sound-hard and sound-soft obstacle scattering models. We demonstrate that a sound-hard obstacle can be viewed as an inhomogeneous medium inclusion with infinite mass density, while a sound-soft obstacle corresponds to an inclusion with zero mass density and zero bulk modulus. Second, we introduce two novel acoustic obstacle scattering models when the mass density of the inclusion degenerates to zero. These new models offer a fresh perspective on considering inhomogeneous medium inclusions with high-contrast material parameters.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70048\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了入射波照射具有高对比材料参数的非均匀介质内含物时谐波声波的渐近特性。在材料参数取极值的情况下,导出了尖锐渐近估计,得到了几种有效的声障碍物散射模型。研究结果阐明了声波非均匀介质散射与障碍物散射之间的关系,为实际声障边界条件的识别提供了明确的依据。本文的贡献是双重的。首先,我们对经典的声硬和声软障碍物散射模型进行了严格的数学表征。我们证明了声硬障碍物可以被视为具有无限质量密度的非均匀介质包裹体,而声软障碍物对应于具有零质量密度和零体积模量的包裹体。其次,我们引入了两种新的夹杂物质量密度退化为零时的声障碍物散射模型。这些新模型为考虑具有高对比度材料参数的非均匀介质内含物提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Asymptotic Behaviors of Acoustic Waves Due to High-Contrast Material Inclusions

This paper investigates the asymptotic behaviors of time-harmonic acoustic waves generated by an incident wave illuminating inhomogeneous medium inclusions with high-contrast material parameters. We derive sharp asymptotic estimates and obtain several effective acoustic obstacle scattering models when the material parameters take extreme values. The results clarify the connection between inhomogeneous medium scattering and obstacle scattering for acoustic waves, providing a clear criterion for identifying the boundary conditions of acoustic obstacles in practice. The contributions of this paper are twofold. First, we provide a rigorous mathematical characterization of the classical sound-hard and sound-soft obstacle scattering models. We demonstrate that a sound-hard obstacle can be viewed as an inhomogeneous medium inclusion with infinite mass density, while a sound-soft obstacle corresponds to an inclusion with zero mass density and zero bulk modulus. Second, we introduce two novel acoustic obstacle scattering models when the mass density of the inclusion degenerates to zero. These new models offer a fresh perspective on considering inhomogeneous medium inclusions with high-contrast material parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信