nasicon结构Li3(Zr,Ti)2(Si,Ge)2PO12中离子电导率的增强:从头算研究

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Jiaqi Wang, Weirong Huo, Zhiwei Peng, Zongqing Tian, Shafiq Ur Rehman, Zongwei Mei, Yinghua Niu, Weiqiang Lv
{"title":"nasicon结构Li3(Zr,Ti)2(Si,Ge)2PO12中离子电导率的增强:从头算研究","authors":"Jiaqi Wang,&nbsp;Weirong Huo,&nbsp;Zhiwei Peng,&nbsp;Zongqing Tian,&nbsp;Shafiq Ur Rehman,&nbsp;Zongwei Mei,&nbsp;Yinghua Niu,&nbsp;Weiqiang Lv","doi":"10.1002/adsu.202401028","DOIUrl":null,"url":null,"abstract":"<p>The development of solid electrolytes with high ionic conductivity is crucial for advancing solid lithium-ion battery technology but is still a challenge. In this study, the ionic conductivity of NASICON-structured materials Li<sub>3</sub>(Zr,Ti)<sub>2</sub>(Si,Ge)<sub>2</sub>PO<sub>12</sub> are explored through ab initio molecular dynamics (AIMD) simulations. This investigation reveals the significant impact of isovalent substitution on the lithium-ion diffusion pathways and the associated energy barriers. Elemental substitutions, such as replacing Zr with Ti, significantly reduce the Li site energy levels, enhance the polyhedral volume, and change the coordination structure from four-coordinate to five-coordinate, thereby facilitating lithium-ion migration. Conversely, substituting Si with Ge reduces the diffusion channel size and increases fluctuation of Li migration potential surface, leading to less favorable ion transport conditions. Li<sub>3</sub>Ti<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> exhibits a room temperature ionic conductivity of 5.79 × 10<sup>−2</sup> Scm<sup>−1</sup>, 163% higher than that of the pristine Li<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub>, with a reduced diffusion barrier of 0.16 eV. Additionally, these analyses reveal that the critical size for effective diffusion channels is vital: below this threshold, ion migration is suppressed; while above it, the channel size no longer limits migration.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Ionic Conductivity in NASICON-Structured Li3(Zr,Ti)2(Si,Ge)2PO12: An Ab Initio Study\",\"authors\":\"Jiaqi Wang,&nbsp;Weirong Huo,&nbsp;Zhiwei Peng,&nbsp;Zongqing Tian,&nbsp;Shafiq Ur Rehman,&nbsp;Zongwei Mei,&nbsp;Yinghua Niu,&nbsp;Weiqiang Lv\",\"doi\":\"10.1002/adsu.202401028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of solid electrolytes with high ionic conductivity is crucial for advancing solid lithium-ion battery technology but is still a challenge. In this study, the ionic conductivity of NASICON-structured materials Li<sub>3</sub>(Zr,Ti)<sub>2</sub>(Si,Ge)<sub>2</sub>PO<sub>12</sub> are explored through ab initio molecular dynamics (AIMD) simulations. This investigation reveals the significant impact of isovalent substitution on the lithium-ion diffusion pathways and the associated energy barriers. Elemental substitutions, such as replacing Zr with Ti, significantly reduce the Li site energy levels, enhance the polyhedral volume, and change the coordination structure from four-coordinate to five-coordinate, thereby facilitating lithium-ion migration. Conversely, substituting Si with Ge reduces the diffusion channel size and increases fluctuation of Li migration potential surface, leading to less favorable ion transport conditions. Li<sub>3</sub>Ti<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> exhibits a room temperature ionic conductivity of 5.79 × 10<sup>−2</sup> Scm<sup>−1</sup>, 163% higher than that of the pristine Li<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub>, with a reduced diffusion barrier of 0.16 eV. Additionally, these analyses reveal that the critical size for effective diffusion channels is vital: below this threshold, ion migration is suppressed; while above it, the channel size no longer limits migration.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202401028\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202401028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

开发具有高离子电导率的固体电解质对于推进固体锂离子电池技术至关重要,但仍然是一个挑战。本研究通过从头算分子动力学(AIMD)模拟研究了nasicon结构材料Li3(Zr,Ti)2(Si,Ge)2PO12的离子电导率。这项研究揭示了等价取代对锂离子扩散途径和相关能垒的重大影响。元素取代,如用Ti取代Zr,显著降低了Li位能级,增加了多面体体积,使配位结构从四坐标变为五坐标,从而促进了锂离子的迁移。相反,用Ge取代Si减小了扩散通道尺寸,增加了Li迁移势面波动,导致离子输运条件变差。Li3Ti2Si2PO12的室温离子电导率为5.79 × 10−2 Scm−1,比原始Li3Zr2Si2PO12高163%,扩散势垒降低为0.16 eV。此外,这些分析表明,有效扩散通道的临界尺寸是至关重要的:低于这个阈值,离子迁移被抑制;在此之上,通道大小不再限制迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Ionic Conductivity in NASICON-Structured Li3(Zr,Ti)2(Si,Ge)2PO12: An Ab Initio Study

The development of solid electrolytes with high ionic conductivity is crucial for advancing solid lithium-ion battery technology but is still a challenge. In this study, the ionic conductivity of NASICON-structured materials Li3(Zr,Ti)2(Si,Ge)2PO12 are explored through ab initio molecular dynamics (AIMD) simulations. This investigation reveals the significant impact of isovalent substitution on the lithium-ion diffusion pathways and the associated energy barriers. Elemental substitutions, such as replacing Zr with Ti, significantly reduce the Li site energy levels, enhance the polyhedral volume, and change the coordination structure from four-coordinate to five-coordinate, thereby facilitating lithium-ion migration. Conversely, substituting Si with Ge reduces the diffusion channel size and increases fluctuation of Li migration potential surface, leading to less favorable ion transport conditions. Li3Ti2Si2PO12 exhibits a room temperature ionic conductivity of 5.79 × 10−2 Scm−1, 163% higher than that of the pristine Li3Zr2Si2PO12, with a reduced diffusion barrier of 0.16 eV. Additionally, these analyses reveal that the critical size for effective diffusion channels is vital: below this threshold, ion migration is suppressed; while above it, the channel size no longer limits migration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信