探索含有新型冷粘合富生物炭轻质骨料的沥青基层混合料的固碳性能

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Daniel Grossegger, Mateusz Wyrzykowski, Nikolajs Toropovs, Pietro Lura
{"title":"探索含有新型冷粘合富生物炭轻质骨料的沥青基层混合料的固碳性能","authors":"Daniel Grossegger,&nbsp;Mateusz Wyrzykowski,&nbsp;Nikolajs Toropovs,&nbsp;Pietro Lura","doi":"10.1617/s11527-025-02639-4","DOIUrl":null,"url":null,"abstract":"<div><p>An emerging strategy to compensate for the greenhouse gas emissions of products is to incorporate carbonaceous materials obtained from removed atmospheric carbon dioxide, mainly obtained through biomass conversion. This approach can turn asphalt pavements into a functional carbon sink. In particular, biochar has been used as a bitumen modifier. However, due to performance limitations, carbonaceous materials were only added in small quantities to asphalt mixtures. An alternative approach is to produce lightweight aggregates to substitute a part of the mineral aggregates of the asphalt mixture. To this end, biochar is pelletised with a hydraulic binder and water in a cold-bonding process, forming spherical pellets labelled as carbon-rich lightweight aggregates (C-LWA). Like other lightweight aggregates, C-LWA showed a reduced mechanical strength compared to conventional mineral aggregates, adversely affecting the asphalt mixture performance. Cracking and rutting resistance almost linearly decreased with C-LWA content. The direct addition of biochar had a similar adverse influence on the mixture performance. Despite a reduced performance, adding biochar and C-LWA reduces the greenhouse gas emissions of asphalt mixtures. Net-zero emissions were estimated for the produced asphalt mixture by adding 5.5 ± 0.4% C-LWA or 3.0 ± 0.2% biochar obtained from the pyrolysis of landscape management wood. A wider range of C-LWA addition (1% to 35.1%) was estimated considering the greenhouse gas emission estimation variability of both asphalt and biochar production.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02639-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the carbon sequestration of an asphalt base course mixture containing novel cold-bonded biochar-rich lightweight aggregates\",\"authors\":\"Daniel Grossegger,&nbsp;Mateusz Wyrzykowski,&nbsp;Nikolajs Toropovs,&nbsp;Pietro Lura\",\"doi\":\"10.1617/s11527-025-02639-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An emerging strategy to compensate for the greenhouse gas emissions of products is to incorporate carbonaceous materials obtained from removed atmospheric carbon dioxide, mainly obtained through biomass conversion. This approach can turn asphalt pavements into a functional carbon sink. In particular, biochar has been used as a bitumen modifier. However, due to performance limitations, carbonaceous materials were only added in small quantities to asphalt mixtures. An alternative approach is to produce lightweight aggregates to substitute a part of the mineral aggregates of the asphalt mixture. To this end, biochar is pelletised with a hydraulic binder and water in a cold-bonding process, forming spherical pellets labelled as carbon-rich lightweight aggregates (C-LWA). Like other lightweight aggregates, C-LWA showed a reduced mechanical strength compared to conventional mineral aggregates, adversely affecting the asphalt mixture performance. Cracking and rutting resistance almost linearly decreased with C-LWA content. The direct addition of biochar had a similar adverse influence on the mixture performance. Despite a reduced performance, adding biochar and C-LWA reduces the greenhouse gas emissions of asphalt mixtures. Net-zero emissions were estimated for the produced asphalt mixture by adding 5.5 ± 0.4% C-LWA or 3.0 ± 0.2% biochar obtained from the pyrolysis of landscape management wood. A wider range of C-LWA addition (1% to 35.1%) was estimated considering the greenhouse gas emission estimation variability of both asphalt and biochar production.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-025-02639-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02639-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02639-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

补偿产品温室气体排放的一种新兴策略是纳入从去除的大气二氧化碳中获得的含碳材料,主要通过生物质转化获得。这种方法可以把沥青路面变成一个功能性的碳汇。特别是,生物炭已被用作沥青改性剂。然而,由于性能的限制,碳质材料只能少量添加到沥青混合料中。另一种方法是生产轻质集料来替代沥青混合料的一部分矿物集料。为此,生物炭在冷粘合过程中与液压粘合剂和水制成颗粒,形成标记为富碳轻质聚集体(C-LWA)的球形颗粒。与其他轻质骨料一样,与传统矿物骨料相比,C-LWA的机械强度降低,对沥青混合料的性能产生不利影响。随着C-LWA含量的增加,抗裂和抗车辙性能几乎呈线性下降。直接添加生物炭对混合料性能也有类似的不利影响。尽管性能下降,但添加生物炭和C-LWA减少了沥青混合物的温室气体排放。通过添加5.5±0.4%的C-LWA或3.0±0.2%的从景观管理木材热解获得的生物炭,估计生产的沥青混合料的净零排放。考虑到沥青和生物炭生产的温室气体排放估算变异性,估计C-LWA添加范围更广(1%至35.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the carbon sequestration of an asphalt base course mixture containing novel cold-bonded biochar-rich lightweight aggregates

An emerging strategy to compensate for the greenhouse gas emissions of products is to incorporate carbonaceous materials obtained from removed atmospheric carbon dioxide, mainly obtained through biomass conversion. This approach can turn asphalt pavements into a functional carbon sink. In particular, biochar has been used as a bitumen modifier. However, due to performance limitations, carbonaceous materials were only added in small quantities to asphalt mixtures. An alternative approach is to produce lightweight aggregates to substitute a part of the mineral aggregates of the asphalt mixture. To this end, biochar is pelletised with a hydraulic binder and water in a cold-bonding process, forming spherical pellets labelled as carbon-rich lightweight aggregates (C-LWA). Like other lightweight aggregates, C-LWA showed a reduced mechanical strength compared to conventional mineral aggregates, adversely affecting the asphalt mixture performance. Cracking and rutting resistance almost linearly decreased with C-LWA content. The direct addition of biochar had a similar adverse influence on the mixture performance. Despite a reduced performance, adding biochar and C-LWA reduces the greenhouse gas emissions of asphalt mixtures. Net-zero emissions were estimated for the produced asphalt mixture by adding 5.5 ± 0.4% C-LWA or 3.0 ± 0.2% biochar obtained from the pyrolysis of landscape management wood. A wider range of C-LWA addition (1% to 35.1%) was estimated considering the greenhouse gas emission estimation variability of both asphalt and biochar production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信