人工神经网络在中子活化测量展开过程中的应用

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
S. Ilić, N. Jovančević, D. Knežević, D. Maletić, C. Stieghorst, A. Nayak, S. Oberstedt, M. Hult, D. Boschmann, L. Kadri, Ö. Ozden, I. Arsenić, M. Krmar
{"title":"人工神经网络在中子活化测量展开过程中的应用","authors":"S. Ilić,&nbsp;N. Jovančević,&nbsp;D. Knežević,&nbsp;D. Maletić,&nbsp;C. Stieghorst,&nbsp;A. Nayak,&nbsp;S. Oberstedt,&nbsp;M. Hult,&nbsp;D. Boschmann,&nbsp;L. Kadri,&nbsp;Ö. Ozden,&nbsp;I. Arsenić,&nbsp;M. Krmar","doi":"10.1140/epja/s10050-025-01555-z","DOIUrl":null,"url":null,"abstract":"<div><p>The MAXED and GRAVEL unfolding algorithms have been used to determine cross-sections, with the NAXSUN method developed at JRC-Geel. This study explores the potential of a particular type of artificial neural network, the multilayer perceptron (MLP), as an alternative to traditional unfolding algorithms. By generating a training dataset using the TALYS 2.0 code and testing the MLP model on real experimental data, we compared the effectiveness of MLP in unfolding neutron-induced reactions cross sections involving indium and rhenium isotopes. The results were benchmarked against those obtained using standard unfolding algorithms and TALYS 2.0 simulations, demonstrating the advantages and limitations of the ANN approach. The obtained results show a much-reduced corridor of uncertainty in the derived cross-section curves compared to previous work using traditional unfolding techniques.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of artificial neural networks for the unfolding procedures in neutron activation measurements\",\"authors\":\"S. Ilić,&nbsp;N. Jovančević,&nbsp;D. Knežević,&nbsp;D. Maletić,&nbsp;C. Stieghorst,&nbsp;A. Nayak,&nbsp;S. Oberstedt,&nbsp;M. Hult,&nbsp;D. Boschmann,&nbsp;L. Kadri,&nbsp;Ö. Ozden,&nbsp;I. Arsenić,&nbsp;M. Krmar\",\"doi\":\"10.1140/epja/s10050-025-01555-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The MAXED and GRAVEL unfolding algorithms have been used to determine cross-sections, with the NAXSUN method developed at JRC-Geel. This study explores the potential of a particular type of artificial neural network, the multilayer perceptron (MLP), as an alternative to traditional unfolding algorithms. By generating a training dataset using the TALYS 2.0 code and testing the MLP model on real experimental data, we compared the effectiveness of MLP in unfolding neutron-induced reactions cross sections involving indium and rhenium isotopes. The results were benchmarked against those obtained using standard unfolding algorithms and TALYS 2.0 simulations, demonstrating the advantages and limitations of the ANN approach. The obtained results show a much-reduced corridor of uncertainty in the derived cross-section curves compared to previous work using traditional unfolding techniques.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"61 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-025-01555-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01555-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

利用JRC-Geel开发的NAXSUN方法,使用了max和GRAVEL展开算法来确定横截面。本研究探索了一种特殊类型的人工神经网络的潜力,多层感知器(MLP),作为传统展开算法的替代方案。通过使用TALYS 2.0代码生成训练数据集,并在实际实验数据上测试MLP模型,我们比较了MLP在展开涉及铟和铼同位素的中子诱导反应截面方面的有效性。结果与使用标准展开算法和TALYS 2.0模拟得到的结果进行了基准测试,证明了人工神经网络方法的优点和局限性。所得结果表明,与以前使用传统展开技术的工作相比,推导出的截面曲线的不确定性走廊大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of artificial neural networks for the unfolding procedures in neutron activation measurements

The MAXED and GRAVEL unfolding algorithms have been used to determine cross-sections, with the NAXSUN method developed at JRC-Geel. This study explores the potential of a particular type of artificial neural network, the multilayer perceptron (MLP), as an alternative to traditional unfolding algorithms. By generating a training dataset using the TALYS 2.0 code and testing the MLP model on real experimental data, we compared the effectiveness of MLP in unfolding neutron-induced reactions cross sections involving indium and rhenium isotopes. The results were benchmarked against those obtained using standard unfolding algorithms and TALYS 2.0 simulations, demonstrating the advantages and limitations of the ANN approach. The obtained results show a much-reduced corridor of uncertainty in the derived cross-section curves compared to previous work using traditional unfolding techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信