{"title":"室温下用于氢气比色检测的介孔PdO-TiO2纳米复合涂层柔性皮革的制备","authors":"Mohan Vedhanayagam, Kalarical Janardhanan Sreeram","doi":"10.1007/s13204-025-03090-1","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid detection of hydrogen gas leakage using flexible colorimetric sensor has been attractive attention in various chemical and automobile industries. However, an existing flexible colorimetric sensor have limitations concerning their lower sensitivity and mechanical strength. In this work, we have fabricated leather-based sensor material via spray coating of mesoporous PdO-TiO<sub>2</sub> nanocomposites (1:1, 2:1, 3:1 for PdO:TiO<sub>2</sub>, size: 32–67 nm) on the leather surface and evaluated as a colorimetric hydrogen gas sensor at room temperature (25℃) with relative humidity (RH 10–90%) for the first time. The crystal structure, pore size, surface area, oxidation state, morphology and mechanical strength of prepared sensing materials (PdO-TiO<sub>2</sub> nanocomposite/PdO-TiO<sub>2</sub> leather) were characterized through X-ray diffraction pattern, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett- Teller (BET), Scanning Electron Microscope (SEM) and Universal testing methods. The color difference (ΔE) of sensor materials was quantitatively calculated from CIELAB values and naked eye readout. The obtained results indicated that the sensor material exhibited rapid hydrogen gas detection capabilities by color changing from brown to black (ΔE = 8.71) when exposed to hydrogen gas (4%, H<sub>2</sub>). Among the sensor materials, PdO-TiO<sub>2</sub> (2:1) nanocomposite-coated leather can detect 10 ppm hydrogen gas with higher selectivity within 10 s due to the large surface area (59.70–113.19 m<sup>2</sup>/g) of the mesoporous nanocomposite. The present study will provide a global strategy for fabricating high-performance flexible colorimetric sensor for detecting hydrogen gas in the chemical and automobile industry.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 2","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of mesoporous PdO–TiO2 nanocomposite coated flexible leather for colorimetric hydrogen gas detection at room temperature\",\"authors\":\"Mohan Vedhanayagam, Kalarical Janardhanan Sreeram\",\"doi\":\"10.1007/s13204-025-03090-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rapid detection of hydrogen gas leakage using flexible colorimetric sensor has been attractive attention in various chemical and automobile industries. However, an existing flexible colorimetric sensor have limitations concerning their lower sensitivity and mechanical strength. In this work, we have fabricated leather-based sensor material via spray coating of mesoporous PdO-TiO<sub>2</sub> nanocomposites (1:1, 2:1, 3:1 for PdO:TiO<sub>2</sub>, size: 32–67 nm) on the leather surface and evaluated as a colorimetric hydrogen gas sensor at room temperature (25℃) with relative humidity (RH 10–90%) for the first time. The crystal structure, pore size, surface area, oxidation state, morphology and mechanical strength of prepared sensing materials (PdO-TiO<sub>2</sub> nanocomposite/PdO-TiO<sub>2</sub> leather) were characterized through X-ray diffraction pattern, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett- Teller (BET), Scanning Electron Microscope (SEM) and Universal testing methods. The color difference (ΔE) of sensor materials was quantitatively calculated from CIELAB values and naked eye readout. The obtained results indicated that the sensor material exhibited rapid hydrogen gas detection capabilities by color changing from brown to black (ΔE = 8.71) when exposed to hydrogen gas (4%, H<sub>2</sub>). Among the sensor materials, PdO-TiO<sub>2</sub> (2:1) nanocomposite-coated leather can detect 10 ppm hydrogen gas with higher selectivity within 10 s due to the large surface area (59.70–113.19 m<sup>2</sup>/g) of the mesoporous nanocomposite. The present study will provide a global strategy for fabricating high-performance flexible colorimetric sensor for detecting hydrogen gas in the chemical and automobile industry.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-025-03090-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03090-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Fabrication of mesoporous PdO–TiO2 nanocomposite coated flexible leather for colorimetric hydrogen gas detection at room temperature
Rapid detection of hydrogen gas leakage using flexible colorimetric sensor has been attractive attention in various chemical and automobile industries. However, an existing flexible colorimetric sensor have limitations concerning their lower sensitivity and mechanical strength. In this work, we have fabricated leather-based sensor material via spray coating of mesoporous PdO-TiO2 nanocomposites (1:1, 2:1, 3:1 for PdO:TiO2, size: 32–67 nm) on the leather surface and evaluated as a colorimetric hydrogen gas sensor at room temperature (25℃) with relative humidity (RH 10–90%) for the first time. The crystal structure, pore size, surface area, oxidation state, morphology and mechanical strength of prepared sensing materials (PdO-TiO2 nanocomposite/PdO-TiO2 leather) were characterized through X-ray diffraction pattern, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett- Teller (BET), Scanning Electron Microscope (SEM) and Universal testing methods. The color difference (ΔE) of sensor materials was quantitatively calculated from CIELAB values and naked eye readout. The obtained results indicated that the sensor material exhibited rapid hydrogen gas detection capabilities by color changing from brown to black (ΔE = 8.71) when exposed to hydrogen gas (4%, H2). Among the sensor materials, PdO-TiO2 (2:1) nanocomposite-coated leather can detect 10 ppm hydrogen gas with higher selectivity within 10 s due to the large surface area (59.70–113.19 m2/g) of the mesoporous nanocomposite. The present study will provide a global strategy for fabricating high-performance flexible colorimetric sensor for detecting hydrogen gas in the chemical and automobile industry.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.