在正交群上使用 Levenberg-Marquardt 算法进行交叉耦合矩阵重构

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiyuan Wang;Hai Ding;Yingjie Di
{"title":"在正交群上使用 Levenberg-Marquardt 算法进行交叉耦合矩阵重构","authors":"Xiyuan Wang;Hai Ding;Yingjie Di","doi":"10.1109/LMWT.2025.3536502","DOIUrl":null,"url":null,"abstract":"This letter introduces a Levenberg-Marquardt (LM) algorithm on the orthogonal group to reconfigure the coupling matrix (CM) for cross-coupled resonator filters of general topology. By leveraging the framework of Lie groups and the exponential map, we perform LM steps locally in the linear space of skew-symmetric matrices, the Lie algebra associated with the orthogonal group. In each LM step, we derive and explicitly formulate a regularized least-squares (LSs) problem in matrix-vector form, and then map the solution back to the orthogonal matrix to transform the CM toward the one with the desired structure. In addition, we integrate the proposed LM algorithm with homotopy optimization to enhance global convergence, particularly for lossy CM reconfiguration. The proposed algorithm demonstrates fast convergence and high accuracy, as evidenced by the results of filter synthesis and fabrication.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 4","pages":"380-383"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Coupling Matrix Reconfiguration Using the Levenberg–Marquardt Algorithm on Orthogonal Groups\",\"authors\":\"Xiyuan Wang;Hai Ding;Yingjie Di\",\"doi\":\"10.1109/LMWT.2025.3536502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a Levenberg-Marquardt (LM) algorithm on the orthogonal group to reconfigure the coupling matrix (CM) for cross-coupled resonator filters of general topology. By leveraging the framework of Lie groups and the exponential map, we perform LM steps locally in the linear space of skew-symmetric matrices, the Lie algebra associated with the orthogonal group. In each LM step, we derive and explicitly formulate a regularized least-squares (LSs) problem in matrix-vector form, and then map the solution back to the orthogonal matrix to transform the CM toward the one with the desired structure. In addition, we integrate the proposed LM algorithm with homotopy optimization to enhance global convergence, particularly for lossy CM reconfiguration. The proposed algorithm demonstrates fast convergence and high accuracy, as evidenced by the results of filter synthesis and fabrication.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 4\",\"pages\":\"380-383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10885534/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10885534/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于正交群的Levenberg-Marquardt (LM)算法,用于重构一般拓扑交叉耦合谐振器滤波器的耦合矩阵(CM)。通过利用李群和指数映射的框架,我们在斜对称矩阵的线性空间局部执行LM步骤,这是与正交群相关的李代数。在每个LM步骤中,我们推导并显式地以矩阵-向量形式表达正则化最小二乘(LSs)问题,然后将解映射回正交矩阵,将CM转换为具有所需结构的CM。此外,我们将所提出的LM算法与同伦优化相结合,以增强全局收敛性,特别是对于有损CM重构。滤波器的合成和制作结果表明,该算法收敛速度快,精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Coupling Matrix Reconfiguration Using the Levenberg–Marquardt Algorithm on Orthogonal Groups
This letter introduces a Levenberg-Marquardt (LM) algorithm on the orthogonal group to reconfigure the coupling matrix (CM) for cross-coupled resonator filters of general topology. By leveraging the framework of Lie groups and the exponential map, we perform LM steps locally in the linear space of skew-symmetric matrices, the Lie algebra associated with the orthogonal group. In each LM step, we derive and explicitly formulate a regularized least-squares (LSs) problem in matrix-vector form, and then map the solution back to the orthogonal matrix to transform the CM toward the one with the desired structure. In addition, we integrate the proposed LM algorithm with homotopy optimization to enhance global convergence, particularly for lossy CM reconfiguration. The proposed algorithm demonstrates fast convergence and high accuracy, as evidenced by the results of filter synthesis and fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信