用于一氧化碳实时检测和微泄漏诊断的高时间分辨全光纤传感器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kaiyu Chai;Yipeng Zheng;Bo Hu;Zihao Zhou;Kaili Ren;Dongdong Han;Lipeng Zhu;Yongkai Wang;Lei Liang
{"title":"用于一氧化碳实时检测和微泄漏诊断的高时间分辨全光纤传感器","authors":"Kaiyu Chai;Yipeng Zheng;Bo Hu;Zihao Zhou;Kaili Ren;Dongdong Han;Lipeng Zhu;Yongkai Wang;Lei Liang","doi":"10.1109/JSEN.2025.3546697","DOIUrl":null,"url":null,"abstract":"The detection of carbon monoxide (CO) is of paramount importance for environmental monitoring, industrial safety, and public health. This study presents an all-fiber gas concentration monitoring technique based on tunable diode laser absorption spectroscopy (TDLAS), offering low gas consumption, high time resolution, high stability, and high precision. A 1-m-long negative curvature anti-resonant hollow core fiber (HCF) with a core diameter of <inline-formula> <tex-math>$110~\\mu $ </tex-math></inline-formula>m is used for both gas containment and optical transmission. Experimental and theoretical simulations confirm that the response time of the system reaches 1.27 s at an overpressure of 98 kPa. Furthermore, the system achieves a relative standard deviation (RSD) of less than 2.5% and a minimum detection limit (MDL) of 0.220 ppm under optimal overpressure conditions. In addition, a spatial-resolved scanning imaging is demonstrated for the CO concentration distribution of 190-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m leakage point, enabling clear identification of the topographical features. This technology has potential in the fields of environmental monitoring, industrial safety, and public health.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 8","pages":"13005-13011"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Time-Resolved All-Fiber Sensor for Real-Time Carbon Monoxide Detection and Microleakage Diagnosis\",\"authors\":\"Kaiyu Chai;Yipeng Zheng;Bo Hu;Zihao Zhou;Kaili Ren;Dongdong Han;Lipeng Zhu;Yongkai Wang;Lei Liang\",\"doi\":\"10.1109/JSEN.2025.3546697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of carbon monoxide (CO) is of paramount importance for environmental monitoring, industrial safety, and public health. This study presents an all-fiber gas concentration monitoring technique based on tunable diode laser absorption spectroscopy (TDLAS), offering low gas consumption, high time resolution, high stability, and high precision. A 1-m-long negative curvature anti-resonant hollow core fiber (HCF) with a core diameter of <inline-formula> <tex-math>$110~\\\\mu $ </tex-math></inline-formula>m is used for both gas containment and optical transmission. Experimental and theoretical simulations confirm that the response time of the system reaches 1.27 s at an overpressure of 98 kPa. Furthermore, the system achieves a relative standard deviation (RSD) of less than 2.5% and a minimum detection limit (MDL) of 0.220 ppm under optimal overpressure conditions. In addition, a spatial-resolved scanning imaging is demonstrated for the CO concentration distribution of 190-<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m leakage point, enabling clear identification of the topographical features. This technology has potential in the fields of environmental monitoring, industrial safety, and public health.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 8\",\"pages\":\"13005-13011\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924455/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10924455/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

一氧化碳(CO)的检测对环境监测、工业安全和公众健康至关重要。本研究提出一种基于可调谐二极管激光吸收光谱(TDLAS)的全光纤气体浓度监测技术,具有低气体消耗、高时间分辨率、高稳定性和高精度的特点。采用1 m长负曲率抗谐振空芯光纤(HCF),芯径为$110~\mu $ m,用于容气和光传输。实验和理论仿真均证实,在超压为98 kPa时,系统的响应时间达到1.27 s。此外,在最佳超压条件下,该系统的相对标准偏差(RSD)小于2.5%,最小检测限(MDL)为0.220 ppm。此外,还展示了190- $\mu $ m泄漏点CO浓度分布的空间分辨扫描成像,能够清晰地识别地形特征。该技术在环境监测、工业安全和公共卫生领域具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Time-Resolved All-Fiber Sensor for Real-Time Carbon Monoxide Detection and Microleakage Diagnosis
The detection of carbon monoxide (CO) is of paramount importance for environmental monitoring, industrial safety, and public health. This study presents an all-fiber gas concentration monitoring technique based on tunable diode laser absorption spectroscopy (TDLAS), offering low gas consumption, high time resolution, high stability, and high precision. A 1-m-long negative curvature anti-resonant hollow core fiber (HCF) with a core diameter of $110~\mu $ m is used for both gas containment and optical transmission. Experimental and theoretical simulations confirm that the response time of the system reaches 1.27 s at an overpressure of 98 kPa. Furthermore, the system achieves a relative standard deviation (RSD) of less than 2.5% and a minimum detection limit (MDL) of 0.220 ppm under optimal overpressure conditions. In addition, a spatial-resolved scanning imaging is demonstrated for the CO concentration distribution of 190- $\mu $ m leakage point, enabling clear identification of the topographical features. This technology has potential in the fields of environmental monitoring, industrial safety, and public health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信