Fan Yang;Thomas Power;Sergio Aguilera Marinovic;Soshi Iba;Rana Soltani Zarrin;Dmitry Berenson
{"title":"基于滚动可微约束和几何约束的多指操作轨迹优化","authors":"Fan Yang;Thomas Power;Sergio Aguilera Marinovic;Soshi Iba;Rana Soltani Zarrin;Dmitry Berenson","doi":"10.1109/LRA.2025.3557752","DOIUrl":null,"url":null,"abstract":"Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables in a differentiable manner and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. To evaluate our method, we introduce a benchmark featuring challenging multi-finger dexterous manipulation tasks, such as screwdriver turning and in-hand reorientation. Our method outperforms baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task and a cuboid alignment task, demonstrating its robustness to the sim2real gap.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"5170-5177"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Finger Manipulation via Trajectory Optimization With Differentiable Rolling and Geometric Constraints\",\"authors\":\"Fan Yang;Thomas Power;Sergio Aguilera Marinovic;Soshi Iba;Rana Soltani Zarrin;Dmitry Berenson\",\"doi\":\"10.1109/LRA.2025.3557752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables in a differentiable manner and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. To evaluate our method, we introduce a benchmark featuring challenging multi-finger dexterous manipulation tasks, such as screwdriver turning and in-hand reorientation. Our method outperforms baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task and a cuboid alignment task, demonstrating its robustness to the sim2real gap.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"5170-5177\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948280/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948280/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Multi-Finger Manipulation via Trajectory Optimization With Differentiable Rolling and Geometric Constraints
Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables in a differentiable manner and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. To evaluate our method, we introduce a benchmark featuring challenging multi-finger dexterous manipulation tasks, such as screwdriver turning and in-hand reorientation. Our method outperforms baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task and a cuboid alignment task, demonstrating its robustness to the sim2real gap.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.