双模表皮传感器用PAM水凝胶基离子电子的3d打印

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yue Zhang;Ao Lan;Yuanhao Xia;Xiangyu Yin;Bingwei He;Pengli Zhu
{"title":"双模表皮传感器用PAM水凝胶基离子电子的3d打印","authors":"Yue Zhang;Ao Lan;Yuanhao Xia;Xiangyu Yin;Bingwei He;Pengli Zhu","doi":"10.1109/JSEN.2025.3549188","DOIUrl":null,"url":null,"abstract":"The advancement of hydrogel-based epidermal sensors that integrate multifunctionality, high transparency, rapid processing, and heightened sensitivity is of significant interest. Herein, we present an efficient approach for the fabrication of flexible dual-mode epidermal sensors through the ultraviolet (UV)-curing 3-D printing of polyacrylamide (PAM)-based ionic hydrogels. The hydrogel precursor incorporates sodium dodecyl sulfate (SDS) monomers to augment the water dispersibility of the 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) photoinitiator, thereby substantially increasing the photocuring efficiency of the ionic hydrogel. As a result, the distinctive surface microstructures of PAM-based ionic hydrogels can be engineered for sensors with varying sensing modalities to improve detection performance. The piezoelectric tactile sensor, incorporating a concentric ring microstructure, demonstrates a sensitivity coefficient of <inline-formula> <tex-math>$1.39~\\text {mV}\\cdot \\text { kPa}^{-{1}}$ </tex-math></inline-formula>. Conversely, the resistive strain sensor, characterized by a high-density reticular hollow structure, exhibits the highest gauge factor of 24.87. Furthermore, each sensor modality demonstrates excellent temporal response and stability, confirming its applicability in motion monitoring and Morse code transmission.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 8","pages":"12616-12626"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D Printing of PAM Hydrogel-Based Iontronic for Dual-Mode Epidermal Sensors\",\"authors\":\"Yue Zhang;Ao Lan;Yuanhao Xia;Xiangyu Yin;Bingwei He;Pengli Zhu\",\"doi\":\"10.1109/JSEN.2025.3549188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of hydrogel-based epidermal sensors that integrate multifunctionality, high transparency, rapid processing, and heightened sensitivity is of significant interest. Herein, we present an efficient approach for the fabrication of flexible dual-mode epidermal sensors through the ultraviolet (UV)-curing 3-D printing of polyacrylamide (PAM)-based ionic hydrogels. The hydrogel precursor incorporates sodium dodecyl sulfate (SDS) monomers to augment the water dispersibility of the 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) photoinitiator, thereby substantially increasing the photocuring efficiency of the ionic hydrogel. As a result, the distinctive surface microstructures of PAM-based ionic hydrogels can be engineered for sensors with varying sensing modalities to improve detection performance. The piezoelectric tactile sensor, incorporating a concentric ring microstructure, demonstrates a sensitivity coefficient of <inline-formula> <tex-math>$1.39~\\\\text {mV}\\\\cdot \\\\text { kPa}^{-{1}}$ </tex-math></inline-formula>. Conversely, the resistive strain sensor, characterized by a high-density reticular hollow structure, exhibits the highest gauge factor of 24.87. Furthermore, each sensor modality demonstrates excellent temporal response and stability, confirming its applicability in motion monitoring and Morse code transmission.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 8\",\"pages\":\"12616-12626\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10925511/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10925511/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于水凝胶的表皮传感器具有多功能性、高透明度、快速处理和高灵敏度等特点。在此,我们提出了一种利用基于聚丙烯酰胺(PAM)的离子水凝胶的紫外线固化3d打印技术制造柔性双模表皮传感器的有效方法。水凝胶前驱体加入十二烷基硫酸钠(SDS)单体,以增强2,4,6-三甲基苯甲酰二苯基氧化膦(TPO)光引发剂的水分散性,从而大大提高离子水凝胶的光固化效率。因此,pam基离子水凝胶的独特表面微观结构可以设计用于具有不同传感模式的传感器,以提高检测性能。采用同心圆结构的压电触觉传感器的灵敏度系数为$1.39~\text {mV}\cdot \text {kPa}^{-{1}}$。相反,具有高密度网状中空结构的电阻式应变传感器的应变系数最高,为24.87。此外,每种传感器模式都具有良好的时间响应和稳定性,证实了其在运动监测和莫尔斯电码传输中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-D Printing of PAM Hydrogel-Based Iontronic for Dual-Mode Epidermal Sensors
The advancement of hydrogel-based epidermal sensors that integrate multifunctionality, high transparency, rapid processing, and heightened sensitivity is of significant interest. Herein, we present an efficient approach for the fabrication of flexible dual-mode epidermal sensors through the ultraviolet (UV)-curing 3-D printing of polyacrylamide (PAM)-based ionic hydrogels. The hydrogel precursor incorporates sodium dodecyl sulfate (SDS) monomers to augment the water dispersibility of the 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) photoinitiator, thereby substantially increasing the photocuring efficiency of the ionic hydrogel. As a result, the distinctive surface microstructures of PAM-based ionic hydrogels can be engineered for sensors with varying sensing modalities to improve detection performance. The piezoelectric tactile sensor, incorporating a concentric ring microstructure, demonstrates a sensitivity coefficient of $1.39~\text {mV}\cdot \text { kPa}^{-{1}}$ . Conversely, the resistive strain sensor, characterized by a high-density reticular hollow structure, exhibits the highest gauge factor of 24.87. Furthermore, each sensor modality demonstrates excellent temporal response and stability, confirming its applicability in motion monitoring and Morse code transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信