基于混合线性模型和元森林的无创血糖预测系统

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuyang Sun;Panagiotis Kosmas
{"title":"基于混合线性模型和元森林的无创血糖预测系统","authors":"Yuyang Sun;Panagiotis Kosmas","doi":"10.1109/JSEN.2025.3542385","DOIUrl":null,"url":null,"abstract":"In this study, we present a noninvasive glucose prediction system that integrates near-infrared (NIR) spectroscopy and millimeter-wave (mm-wave) sensing. We employ a mixed linear model (MixedLM) to analyze the association between mm-wave frequency <inline-formula> <tex-math>${S}_{{21}}$ </tex-math></inline-formula> parameters and blood glucose levels within a heterogeneous dataset. The MixedLM method considers intersubject variability and integrates multiple predictors, offering a more comprehensive analysis than traditional correlation analysis. In addition, we incorporate a domain generalization (DG) model, meta-forests, to effectively handle domain variance in the dataset, enhancing the model’s adaptability to individual differences. Our results demonstrate promising accuracy in glucose prediction for unseen subjects, with a mean absolute error (MAE) of 17.47 mg/dL, a root mean square error (RMSE) of 31.83 mg/dL, and a mean absolute percentage error (MAPE) of 10.88%, highlighting its potential for clinical application. This study marks a significant step toward developing accurate, personalized, and noninvasive glucose monitoring systems, contributing to improved diabetes management.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 8","pages":"14209-14219"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive Glucose Prediction System Enhanced by Mixed Linear Models and Meta-Forests for Domain Generalization\",\"authors\":\"Yuyang Sun;Panagiotis Kosmas\",\"doi\":\"10.1109/JSEN.2025.3542385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a noninvasive glucose prediction system that integrates near-infrared (NIR) spectroscopy and millimeter-wave (mm-wave) sensing. We employ a mixed linear model (MixedLM) to analyze the association between mm-wave frequency <inline-formula> <tex-math>${S}_{{21}}$ </tex-math></inline-formula> parameters and blood glucose levels within a heterogeneous dataset. The MixedLM method considers intersubject variability and integrates multiple predictors, offering a more comprehensive analysis than traditional correlation analysis. In addition, we incorporate a domain generalization (DG) model, meta-forests, to effectively handle domain variance in the dataset, enhancing the model’s adaptability to individual differences. Our results demonstrate promising accuracy in glucose prediction for unseen subjects, with a mean absolute error (MAE) of 17.47 mg/dL, a root mean square error (RMSE) of 31.83 mg/dL, and a mean absolute percentage error (MAPE) of 10.88%, highlighting its potential for clinical application. This study marks a significant step toward developing accurate, personalized, and noninvasive glucose monitoring systems, contributing to improved diabetes management.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 8\",\"pages\":\"14209-14219\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10913971/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10913971/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种集成了近红外(NIR)光谱和毫米波(mm-wave)传感的无创血糖预测系统。我们采用混合线性模型(MixedLM)来分析异质数据集中毫米波频率${S}_{{21}}$参数与血糖水平之间的关系。MixedLM方法考虑了主体间的可变性,并集成了多个预测因子,提供了比传统相关分析更全面的分析。此外,我们还引入了域泛化(DG)模型元森林来有效处理数据集中的域差异,增强了模型对个体差异的适应性。我们的研究结果显示,对未见受试者的血糖预测具有良好的准确性,平均绝对误差(MAE)为17.47 mg/dL,均方根误差(RMSE)为31.83 mg/dL,平均绝对百分比误差(MAPE)为10.88%,突出了其临床应用潜力。这项研究标志着朝着开发准确、个性化和无创血糖监测系统迈出了重要的一步,有助于改善糖尿病的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noninvasive Glucose Prediction System Enhanced by Mixed Linear Models and Meta-Forests for Domain Generalization
In this study, we present a noninvasive glucose prediction system that integrates near-infrared (NIR) spectroscopy and millimeter-wave (mm-wave) sensing. We employ a mixed linear model (MixedLM) to analyze the association between mm-wave frequency ${S}_{{21}}$ parameters and blood glucose levels within a heterogeneous dataset. The MixedLM method considers intersubject variability and integrates multiple predictors, offering a more comprehensive analysis than traditional correlation analysis. In addition, we incorporate a domain generalization (DG) model, meta-forests, to effectively handle domain variance in the dataset, enhancing the model’s adaptability to individual differences. Our results demonstrate promising accuracy in glucose prediction for unseen subjects, with a mean absolute error (MAE) of 17.47 mg/dL, a root mean square error (RMSE) of 31.83 mg/dL, and a mean absolute percentage error (MAPE) of 10.88%, highlighting its potential for clinical application. This study marks a significant step toward developing accurate, personalized, and noninvasive glucose monitoring systems, contributing to improved diabetes management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信