DSM-Net:深海采矿船声纳图像的多尺度检测网络

IF 4.4 2区 工程技术 Q1 ENGINEERING, OCEAN
Xinran Liu , Jianmin Yang , Wenhao Xu , Qihang Chen , Haining Lu , Yu Chai , Changyu Lu , Yulong Xue
{"title":"DSM-Net:深海采矿船声纳图像的多尺度检测网络","authors":"Xinran Liu ,&nbsp;Jianmin Yang ,&nbsp;Wenhao Xu ,&nbsp;Qihang Chen ,&nbsp;Haining Lu ,&nbsp;Yu Chai ,&nbsp;Changyu Lu ,&nbsp;Yulong Xue","doi":"10.1016/j.apor.2025.104551","DOIUrl":null,"url":null,"abstract":"<div><div>Deep-sea mining vehicles (DSMVs) play a crucial role in deep-sea mining operations, requiring high-precision, real-time detection of seabed rocks and terrain of varying scales to ensure safe navigation and operation. However, the complexity of multi-scale seabed terrains, along with the low resolution and high noise levels in sonar images, makes accurate real-time detection a challenge. To address these issues, DSM-Net, a multi-scale terrain detection network specifically designed for deep-sea mining, is proposed. DSM-Net integrates several innovative modules: the Tri-Scale Attention Module (TSA) extracts multi-scale features and reduces noise interference, the Partial-Dynamic Module (PDM) improves inference speed, and the ASFF* detection head incorporates an additional small-target detection layer. Furthermore, an adaptive weighting function, Adaptive Difficulty Loss (ADL), is introduced to handle the imbalance in the number of targets across different scales in actual seabed environments. DSM-Net was evaluated on the DSMSD dataset, showing a 2.16 % improvement in [email protected]:0.95 and an 18.75 % reduction in inference time compared to the YOLOv8 baseline, striking an effective balance between detection speed and accuracy. In sea trials, DSM-Net contributed to path planning and obstacle avoidance, proving its practical engineering value.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"158 ","pages":"Article 104551"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSM-Net: A multi-scale detection network of sonar images for deep-sea mining vehicle\",\"authors\":\"Xinran Liu ,&nbsp;Jianmin Yang ,&nbsp;Wenhao Xu ,&nbsp;Qihang Chen ,&nbsp;Haining Lu ,&nbsp;Yu Chai ,&nbsp;Changyu Lu ,&nbsp;Yulong Xue\",\"doi\":\"10.1016/j.apor.2025.104551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep-sea mining vehicles (DSMVs) play a crucial role in deep-sea mining operations, requiring high-precision, real-time detection of seabed rocks and terrain of varying scales to ensure safe navigation and operation. However, the complexity of multi-scale seabed terrains, along with the low resolution and high noise levels in sonar images, makes accurate real-time detection a challenge. To address these issues, DSM-Net, a multi-scale terrain detection network specifically designed for deep-sea mining, is proposed. DSM-Net integrates several innovative modules: the Tri-Scale Attention Module (TSA) extracts multi-scale features and reduces noise interference, the Partial-Dynamic Module (PDM) improves inference speed, and the ASFF* detection head incorporates an additional small-target detection layer. Furthermore, an adaptive weighting function, Adaptive Difficulty Loss (ADL), is introduced to handle the imbalance in the number of targets across different scales in actual seabed environments. DSM-Net was evaluated on the DSMSD dataset, showing a 2.16 % improvement in [email protected]:0.95 and an 18.75 % reduction in inference time compared to the YOLOv8 baseline, striking an effective balance between detection speed and accuracy. In sea trials, DSM-Net contributed to path planning and obstacle avoidance, proving its practical engineering value.</div></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"158 \",\"pages\":\"Article 104551\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118725001397\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725001397","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

深海采矿车(DSMV)在深海采矿作业中发挥着至关重要的作用,需要对不同尺度的海底岩石和地形进行高精度的实时探测,以确保导航和作业安全。然而,多尺度海底地形的复杂性,以及声纳图像的低分辨率和高噪声水平,使得精确的实时探测成为一项挑战。为解决这些问题,我们提出了专为深海采矿设计的多尺度地形探测网络 DSM-Net。DSM-Net 集成了多个创新模块:三尺度关注模块 (TSA) 可提取多尺度特征并减少噪声干扰;部分动态模块 (PDM) 可提高推理速度;ASFF* 检测头集成了额外的小目标检测层。此外,还引入了自适应加权函数--自适应难度损失(ADL),以处理实际海底环境中不同尺度目标数量不平衡的问题。DSM-Net 在 DSMSD 数据集上进行了评估,与 YOLOv8 基线相比,[email protected]:0.95提高了 2.16%,推理时间缩短了 18.75%,在探测速度和准确性之间取得了有效平衡。在海上试验中,DSM-Net 为路径规划和避障做出了贡献,证明了其实际工程价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSM-Net: A multi-scale detection network of sonar images for deep-sea mining vehicle
Deep-sea mining vehicles (DSMVs) play a crucial role in deep-sea mining operations, requiring high-precision, real-time detection of seabed rocks and terrain of varying scales to ensure safe navigation and operation. However, the complexity of multi-scale seabed terrains, along with the low resolution and high noise levels in sonar images, makes accurate real-time detection a challenge. To address these issues, DSM-Net, a multi-scale terrain detection network specifically designed for deep-sea mining, is proposed. DSM-Net integrates several innovative modules: the Tri-Scale Attention Module (TSA) extracts multi-scale features and reduces noise interference, the Partial-Dynamic Module (PDM) improves inference speed, and the ASFF* detection head incorporates an additional small-target detection layer. Furthermore, an adaptive weighting function, Adaptive Difficulty Loss (ADL), is introduced to handle the imbalance in the number of targets across different scales in actual seabed environments. DSM-Net was evaluated on the DSMSD dataset, showing a 2.16 % improvement in [email protected]:0.95 and an 18.75 % reduction in inference time compared to the YOLOv8 baseline, striking an effective balance between detection speed and accuracy. In sea trials, DSM-Net contributed to path planning and obstacle avoidance, proving its practical engineering value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信