Changpei Lu , Yunbu Ding , Rongshuang Zhang , Yimei Du , Lingbo Bi , Min Zhao , Chaofan Wang , Qiaofang Wu , Haixia Jing , Weixin Fan
{"title":"富血小板血浆源性外泌体通过激活Wnt/β-Catenin信号通路刺激毛囊生长","authors":"Changpei Lu , Yunbu Ding , Rongshuang Zhang , Yimei Du , Lingbo Bi , Min Zhao , Chaofan Wang , Qiaofang Wu , Haixia Jing , Weixin Fan","doi":"10.1016/j.reth.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Androgenetic alopecia (AGA) is a common type of hair loss that affects a large segment of the global population, significantly influencing individuals' appearance and mental health. Existing treatments like minoxidil and finasteride have limited effectiveness and can cause side effects, highlighting the need for alternative therapies.</div></div><div><h3>Objective</h3><div>This study aims to explore the effectiveness of platelet-rich plasma-derived exosomes (PRP-Exos) in stimulating hair follicle growth and the proliferation of human dermal papilla cells (DPCs), as well as to investigate the mechanisms involved.</div></div><div><h3>Methods</h3><div>PRP-Exos were isolated and characterized using techniques such as nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. The impact of PRP-Exos on DPC proliferation was measured using CCK-8 assays, while their migration was assessed through Transwell migration and scratch wound healing assays. Flow cytometry was used to analyze cell cycle progression. Hair follicle organ culture was employed to examine the effects of PRP-Exos on hair follicle growth, and in vivo experiments were conducted in a mouse model to assess the influence of PRP-Exos on hair follicles.</div></div><div><h3>Results</h3><div>DPCs internalized PRP-Exos, which significantly boosted their proliferation and migration, as shown by CCK-8, Transwell migration, and scratch wound healing assays. Flow cytometry revealed that PRP-Exos facilitated cell cycle progression in DPCs. Furthermore, treatment with PRP-Exos resulted in increased levels of β-Catenin and Lef-1, along with decreased expression of SFRP1, indicating activation of the Wnt/β-Catenin pathway. Hair follicle organ culture indicated enhanced hair follicle growth and a prolonged anagen phase, delaying the transition to the telogen phase. In vivo studies demonstrated increased skin thickness, hair follicle diameter, and a favorable anagen-to-telogen ratio in mice, promoting hair growth during the telogen phase.</div></div><div><h3>Conclusions</h3><div>PRP-Exos show promise as a therapeutic option for AGA by stimulating hair follicle growth through the activation of the Wnt/β-Catenin signaling pathway. These findings suggest that PRP-Exos could enhance hair follicle regeneration both in vitro and in vivo.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"29 ","pages":"Pages 435-446"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platelet-rich plasma-derived exosomes stimulate hair follicle growth through activation of the Wnt/β-Catenin signaling pathway\",\"authors\":\"Changpei Lu , Yunbu Ding , Rongshuang Zhang , Yimei Du , Lingbo Bi , Min Zhao , Chaofan Wang , Qiaofang Wu , Haixia Jing , Weixin Fan\",\"doi\":\"10.1016/j.reth.2025.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Androgenetic alopecia (AGA) is a common type of hair loss that affects a large segment of the global population, significantly influencing individuals' appearance and mental health. Existing treatments like minoxidil and finasteride have limited effectiveness and can cause side effects, highlighting the need for alternative therapies.</div></div><div><h3>Objective</h3><div>This study aims to explore the effectiveness of platelet-rich plasma-derived exosomes (PRP-Exos) in stimulating hair follicle growth and the proliferation of human dermal papilla cells (DPCs), as well as to investigate the mechanisms involved.</div></div><div><h3>Methods</h3><div>PRP-Exos were isolated and characterized using techniques such as nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. The impact of PRP-Exos on DPC proliferation was measured using CCK-8 assays, while their migration was assessed through Transwell migration and scratch wound healing assays. Flow cytometry was used to analyze cell cycle progression. Hair follicle organ culture was employed to examine the effects of PRP-Exos on hair follicle growth, and in vivo experiments were conducted in a mouse model to assess the influence of PRP-Exos on hair follicles.</div></div><div><h3>Results</h3><div>DPCs internalized PRP-Exos, which significantly boosted their proliferation and migration, as shown by CCK-8, Transwell migration, and scratch wound healing assays. Flow cytometry revealed that PRP-Exos facilitated cell cycle progression in DPCs. Furthermore, treatment with PRP-Exos resulted in increased levels of β-Catenin and Lef-1, along with decreased expression of SFRP1, indicating activation of the Wnt/β-Catenin pathway. Hair follicle organ culture indicated enhanced hair follicle growth and a prolonged anagen phase, delaying the transition to the telogen phase. In vivo studies demonstrated increased skin thickness, hair follicle diameter, and a favorable anagen-to-telogen ratio in mice, promoting hair growth during the telogen phase.</div></div><div><h3>Conclusions</h3><div>PRP-Exos show promise as a therapeutic option for AGA by stimulating hair follicle growth through the activation of the Wnt/β-Catenin signaling pathway. These findings suggest that PRP-Exos could enhance hair follicle regeneration both in vitro and in vivo.</div></div>\",\"PeriodicalId\":20895,\"journal\":{\"name\":\"Regenerative Therapy\",\"volume\":\"29 \",\"pages\":\"Pages 435-446\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Therapy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352320425000793\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425000793","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Platelet-rich plasma-derived exosomes stimulate hair follicle growth through activation of the Wnt/β-Catenin signaling pathway
Background
Androgenetic alopecia (AGA) is a common type of hair loss that affects a large segment of the global population, significantly influencing individuals' appearance and mental health. Existing treatments like minoxidil and finasteride have limited effectiveness and can cause side effects, highlighting the need for alternative therapies.
Objective
This study aims to explore the effectiveness of platelet-rich plasma-derived exosomes (PRP-Exos) in stimulating hair follicle growth and the proliferation of human dermal papilla cells (DPCs), as well as to investigate the mechanisms involved.
Methods
PRP-Exos were isolated and characterized using techniques such as nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. The impact of PRP-Exos on DPC proliferation was measured using CCK-8 assays, while their migration was assessed through Transwell migration and scratch wound healing assays. Flow cytometry was used to analyze cell cycle progression. Hair follicle organ culture was employed to examine the effects of PRP-Exos on hair follicle growth, and in vivo experiments were conducted in a mouse model to assess the influence of PRP-Exos on hair follicles.
Results
DPCs internalized PRP-Exos, which significantly boosted their proliferation and migration, as shown by CCK-8, Transwell migration, and scratch wound healing assays. Flow cytometry revealed that PRP-Exos facilitated cell cycle progression in DPCs. Furthermore, treatment with PRP-Exos resulted in increased levels of β-Catenin and Lef-1, along with decreased expression of SFRP1, indicating activation of the Wnt/β-Catenin pathway. Hair follicle organ culture indicated enhanced hair follicle growth and a prolonged anagen phase, delaying the transition to the telogen phase. In vivo studies demonstrated increased skin thickness, hair follicle diameter, and a favorable anagen-to-telogen ratio in mice, promoting hair growth during the telogen phase.
Conclusions
PRP-Exos show promise as a therapeutic option for AGA by stimulating hair follicle growth through the activation of the Wnt/β-Catenin signaling pathway. These findings suggest that PRP-Exos could enhance hair follicle regeneration both in vitro and in vivo.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.