南非土壤,土地覆盖和天气生成器文件数据库为SWAT应用程序

IF 5 2区 地球科学 Q1 WATER RESOURCES
Jay le Roux , Ndifelani Mararakanye , Michael van der Laan , Leushantha Mudaly , Harold Louw Weepener , Johan van Tol
{"title":"南非土壤,土地覆盖和天气生成器文件数据库为SWAT应用程序","authors":"Jay le Roux ,&nbsp;Ndifelani Mararakanye ,&nbsp;Michael van der Laan ,&nbsp;Leushantha Mudaly ,&nbsp;Harold Louw Weepener ,&nbsp;Johan van Tol","doi":"10.1016/j.ejrh.2025.102387","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>South Africa.</div></div><div><h3>Study focus</h3><div>The focus of the study is to develop soil, land cover and weather generator file datasets for Soil and Water Assessment Tool (SWAT) applications in South Africa. The first objective was to format national datasets for use as baseline to run the SWAT model in South Africa. The second objective was to evaluate the performance of the baseline input data by applying the national datasets in four (previously simulated) research catchments.</div></div><div><h3>New hydrological insights for the region</h3><div>The input datasets comprise of geo-spatial datasets at a national scale to run ArcSWAT or QSWAT (graphical user interface for SWAT in ArcGIS and SWAT+ in QGIS, respectively) in South Africa including: SWAT catchment outline data (tertiary and quaternary); Land cover maps at 20–30 m resolution including South African National Land Cover (2014, 2018, 2020) linked to SWAT land cover codes; A soil map with SWAT attribute data derived from pedotransfer functions of the Land Type Database of South Africa useable at a scale of 1:250,000; Weather statistics (WGN) files for 12 weather stations obtained from the Agricultural Research Council in South Africa. The national baseline data is an important step forward in hydrological modelling by assisting modellers to set-up and run the SWAT model in South Africa.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"59 ","pages":"Article 102387"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"South African soil, land cover and weather generator file databases for SWAT applications\",\"authors\":\"Jay le Roux ,&nbsp;Ndifelani Mararakanye ,&nbsp;Michael van der Laan ,&nbsp;Leushantha Mudaly ,&nbsp;Harold Louw Weepener ,&nbsp;Johan van Tol\",\"doi\":\"10.1016/j.ejrh.2025.102387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>South Africa.</div></div><div><h3>Study focus</h3><div>The focus of the study is to develop soil, land cover and weather generator file datasets for Soil and Water Assessment Tool (SWAT) applications in South Africa. The first objective was to format national datasets for use as baseline to run the SWAT model in South Africa. The second objective was to evaluate the performance of the baseline input data by applying the national datasets in four (previously simulated) research catchments.</div></div><div><h3>New hydrological insights for the region</h3><div>The input datasets comprise of geo-spatial datasets at a national scale to run ArcSWAT or QSWAT (graphical user interface for SWAT in ArcGIS and SWAT+ in QGIS, respectively) in South Africa including: SWAT catchment outline data (tertiary and quaternary); Land cover maps at 20–30 m resolution including South African National Land Cover (2014, 2018, 2020) linked to SWAT land cover codes; A soil map with SWAT attribute data derived from pedotransfer functions of the Land Type Database of South Africa useable at a scale of 1:250,000; Weather statistics (WGN) files for 12 weather stations obtained from the Agricultural Research Council in South Africa. The national baseline data is an important step forward in hydrological modelling by assisting modellers to set-up and run the SWAT model in South Africa.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"59 \",\"pages\":\"Article 102387\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825002125\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825002125","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

研究区域:南非。该研究的重点是为南非的水土评估工具(SWAT)应用开发土壤、土地覆盖和天气生成器文件数据集。第一个目标是格式化国家数据集,作为在南非运行SWAT模型的基线。第二个目标是通过在四个(以前模拟的)研究流域应用国家数据集来评估基线输入数据的性能。输入数据集包括在南非运行ArcSWAT或QSWAT(分别为ArcGIS中的SWAT和QGIS中的SWAT+的图形用户界面)的全国范围内的地理空间数据集,包括:SWAT集水区轮廓数据(三级和四级);20-30 m分辨率的土地覆盖图,包括与SWAT土地覆盖代码相关的南非国家土地覆盖(2014、2018、2020);基于南非土地类型数据库土壤转移函数SWAT属性数据的1:25万比例尺土壤地图从南非农业研究理事会获得的12个气象站的天气统计数据(WGN)文件。国家基线数据通过协助建模人员在南非建立和运行SWAT模型,是在水文建模方面向前迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
South African soil, land cover and weather generator file databases for SWAT applications

Study region

South Africa.

Study focus

The focus of the study is to develop soil, land cover and weather generator file datasets for Soil and Water Assessment Tool (SWAT) applications in South Africa. The first objective was to format national datasets for use as baseline to run the SWAT model in South Africa. The second objective was to evaluate the performance of the baseline input data by applying the national datasets in four (previously simulated) research catchments.

New hydrological insights for the region

The input datasets comprise of geo-spatial datasets at a national scale to run ArcSWAT or QSWAT (graphical user interface for SWAT in ArcGIS and SWAT+ in QGIS, respectively) in South Africa including: SWAT catchment outline data (tertiary and quaternary); Land cover maps at 20–30 m resolution including South African National Land Cover (2014, 2018, 2020) linked to SWAT land cover codes; A soil map with SWAT attribute data derived from pedotransfer functions of the Land Type Database of South Africa useable at a scale of 1:250,000; Weather statistics (WGN) files for 12 weather stations obtained from the Agricultural Research Council in South Africa. The national baseline data is an important step forward in hydrological modelling by assisting modellers to set-up and run the SWAT model in South Africa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信