{"title":"基于超微氧化铁纳米颗粒的治疗剂智能设计","authors":"Yue Gao, Xiangyang Shi, Mingwu Shen*","doi":"10.1021/acsami.1c13341","DOIUrl":null,"url":null,"abstract":"<p >Rapid advances in nanotechnology have opened up innovative trails to break through the current limitation in clinical treatments of cancer and other critical diseases that plague human beings. Ultrasmall iron oxide nanoparticles (USIO NPs) with sizes smaller than 5 nm have been emerging as a novel category of nanomaterials with increasing interest in the biomedical domains. To overcome their intrinsic shortcomings, naked USIO NPs can be functionalized, clustered, assembled, or incorporated with other nanomaterials to generate various kinds of intelligent nanoplatforms for single-mode or dynamic magnetic resonance (MR) imaging, multimode imaging, as well as imaging-guided precision therapy. In this spotlight on applications, first, we propose the principal aspects in the design and application of USIO NPs for biomedical uses. Second, we cover the recent design strategies of USIO NP-based nanoplatforms mainly developed by our group, describe the rationale on the combination of other functional materials with USIO NPs, and review their resultant applications in theranostics. In addition, we provide herein a perspective on the possible future directions toward USIO NP-based nanoplatforms as smart nanomedicines.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 38","pages":"45119–45129"},"PeriodicalIF":8.3000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Intelligent Design of Ultrasmall Iron Oxide Nanoparticle-Based Theranostics\",\"authors\":\"Yue Gao, Xiangyang Shi, Mingwu Shen*\",\"doi\":\"10.1021/acsami.1c13341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rapid advances in nanotechnology have opened up innovative trails to break through the current limitation in clinical treatments of cancer and other critical diseases that plague human beings. Ultrasmall iron oxide nanoparticles (USIO NPs) with sizes smaller than 5 nm have been emerging as a novel category of nanomaterials with increasing interest in the biomedical domains. To overcome their intrinsic shortcomings, naked USIO NPs can be functionalized, clustered, assembled, or incorporated with other nanomaterials to generate various kinds of intelligent nanoplatforms for single-mode or dynamic magnetic resonance (MR) imaging, multimode imaging, as well as imaging-guided precision therapy. In this spotlight on applications, first, we propose the principal aspects in the design and application of USIO NPs for biomedical uses. Second, we cover the recent design strategies of USIO NP-based nanoplatforms mainly developed by our group, describe the rationale on the combination of other functional materials with USIO NPs, and review their resultant applications in theranostics. In addition, we provide herein a perspective on the possible future directions toward USIO NP-based nanoplatforms as smart nanomedicines.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"13 38\",\"pages\":\"45119–45129\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.1c13341\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.1c13341","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Intelligent Design of Ultrasmall Iron Oxide Nanoparticle-Based Theranostics
Rapid advances in nanotechnology have opened up innovative trails to break through the current limitation in clinical treatments of cancer and other critical diseases that plague human beings. Ultrasmall iron oxide nanoparticles (USIO NPs) with sizes smaller than 5 nm have been emerging as a novel category of nanomaterials with increasing interest in the biomedical domains. To overcome their intrinsic shortcomings, naked USIO NPs can be functionalized, clustered, assembled, or incorporated with other nanomaterials to generate various kinds of intelligent nanoplatforms for single-mode or dynamic magnetic resonance (MR) imaging, multimode imaging, as well as imaging-guided precision therapy. In this spotlight on applications, first, we propose the principal aspects in the design and application of USIO NPs for biomedical uses. Second, we cover the recent design strategies of USIO NP-based nanoplatforms mainly developed by our group, describe the rationale on the combination of other functional materials with USIO NPs, and review their resultant applications in theranostics. In addition, we provide herein a perspective on the possible future directions toward USIO NP-based nanoplatforms as smart nanomedicines.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.